亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing risk-based breast cancer screening policies with reinforcement learning

强化学习 背景(考古学) 乳腺癌筛查 计算机科学 人工智能 乳腺癌 机器学习 癌症筛查 医学 乳腺摄影术 癌症 生物 内科学 古生物学
作者
Adam Yala,Peter G. Mikhael,Constance D. Lehman,Gigin Lin,Fredrik Strand,Yung‐Liang Wan,Kevin S. Hughes,Siddharth Satuluru,Thomas Kim,Imon Banerjee,Judy Wawira Gichoya,Hari Trivedi,Regina Barzilay
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (1): 136-143 被引量:65
标识
DOI:10.1038/s41591-021-01599-w
摘要

Screening programs must balance the benefit of early detection with the cost of overscreening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH; USA) and validated this dataset in held-out patients from MGH and external datasets from Emory University (Emory; USA), Karolinska Institute (Karolinska; Sweden) and Chang Gung Memorial Hospital (CGMH; Taiwan). Across all test sets, we find that the Tempo policy combined with an image-based artificial intelligence (AI) risk model is significantly more efficient than current regimens used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we show that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired trade-off between early detection and screening costs without training new policies. Finally, we demonstrate that Tempo policies based on AI-based risk models outperform Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs by advancing early detection while reducing overscreening. A reinforcement learning model can predict risk-based follow-up recommendations to improve early detection and reduce screening costs in breast cancer across diverse patient populations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
星燃发布了新的文献求助10
4秒前
9秒前
14秒前
14秒前
宝宝熊的熊宝宝完成签到,获得积分10
16秒前
18秒前
扣子发布了新的文献求助30
19秒前
Catching发布了新的文献求助10
20秒前
atao发布了新的文献求助10
22秒前
Criminology34应助标致金毛采纳,获得10
23秒前
粽子完成签到,获得积分10
26秒前
无花果应助Catching采纳,获得10
30秒前
atao完成签到,获得积分10
31秒前
过时的凌蝶应助天真傲之采纳,获得10
43秒前
50秒前
sensen发布了新的文献求助10
50秒前
Criminology34举报月光入梦求助涉嫌违规
54秒前
55秒前
达不溜搽发布了新的文献求助10
57秒前
sailingluwl完成签到,获得积分10
59秒前
1分钟前
1分钟前
王金煜发布了新的文献求助10
1分钟前
桐桐应助王金煜采纳,获得30
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
1分钟前
星燃发布了新的文献求助10
1分钟前
六六完成签到 ,获得积分10
1分钟前
1分钟前
糖诗发布了新的文献求助10
1分钟前
受伤纲完成签到 ,获得积分10
1分钟前
安静书雁发布了新的文献求助30
1分钟前
诚心山灵完成签到,获得积分10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
SciGPT应助星燃采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568155
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701831
捐赠科研通 4594464
什么是DOI,文献DOI怎么找? 2520964
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696