亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing risk-based breast cancer screening policies with reinforcement learning

强化学习 背景(考古学) 乳腺癌筛查 计算机科学 人工智能 乳腺癌 机器学习 癌症筛查 医学 乳腺摄影术 癌症 生物 内科学 古生物学
作者
Adam Yala,Peter G. Mikhael,Constance D. Lehman,Gigin Lin,Fredrik Strand,Yung‐Liang Wan,Kevin S. Hughes,Siddharth Satuluru,Thomas Kim,Imon Banerjee,Judy Wawira Gichoya,Hari Trivedi,Regina Barzilay
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:28 (1): 136-143 被引量:65
标识
DOI:10.1038/s41591-021-01599-w
摘要

Screening programs must balance the benefit of early detection with the cost of overscreening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH; USA) and validated this dataset in held-out patients from MGH and external datasets from Emory University (Emory; USA), Karolinska Institute (Karolinska; Sweden) and Chang Gung Memorial Hospital (CGMH; Taiwan). Across all test sets, we find that the Tempo policy combined with an image-based artificial intelligence (AI) risk model is significantly more efficient than current regimens used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we show that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired trade-off between early detection and screening costs without training new policies. Finally, we demonstrate that Tempo policies based on AI-based risk models outperform Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs by advancing early detection while reducing overscreening. A reinforcement learning model can predict risk-based follow-up recommendations to improve early detection and reduce screening costs in breast cancer across diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lvying完成签到,获得积分20
6秒前
俊逸沛菡完成签到 ,获得积分10
7秒前
lvying发布了新的文献求助10
9秒前
脑洞疼应助lvying采纳,获得10
16秒前
情怀应助qiuqiuqiuqiu采纳,获得10
16秒前
28秒前
哎健身完成签到 ,获得积分10
33秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
34秒前
隐形的谷槐完成签到 ,获得积分10
40秒前
59秒前
毓雅完成签到,获得积分10
1分钟前
可爱的函函应助Jy采纳,获得10
1分钟前
华仔应助ceeray23采纳,获得20
1分钟前
qiuqiuqiuqiu发布了新的文献求助10
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Jy发布了新的文献求助10
1分钟前
SciGPT应助lan采纳,获得10
1分钟前
彭于晏应助雪雪采纳,获得10
1分钟前
凶狠的寄风完成签到 ,获得积分10
1分钟前
Jasper应助不要再亏人了采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
雪雪完成签到,获得积分10
1分钟前
1分钟前
雪雪发布了新的文献求助10
1分钟前
lan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
三三完成签到,获得积分10
2分钟前
lf发布了新的文献求助10
2分钟前
JiangYifan完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976628
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204575
捐赠科研通 3257428
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613