亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing risk-based breast cancer screening policies with reinforcement learning

强化学习 背景(考古学) 乳腺癌筛查 计算机科学 人工智能 乳腺癌 机器学习 癌症筛查 医学 乳腺摄影术 癌症 生物 内科学 古生物学
作者
Adam Yala,Peter G. Mikhael,Constance D. Lehman,Gigin Lin,Fredrik Strand,Yung‐Liang Wan,Kevin S. Hughes,Siddharth Satuluru,Thomas Kim,Imon Banerjee,Judy Wawira Gichoya,Hari Trivedi,Regina Barzilay
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (1): 136-143 被引量:53
标识
DOI:10.1038/s41591-021-01599-w
摘要

Screening programs must balance the benefit of early detection with the cost of overscreening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH; USA) and validated this dataset in held-out patients from MGH and external datasets from Emory University (Emory; USA), Karolinska Institute (Karolinska; Sweden) and Chang Gung Memorial Hospital (CGMH; Taiwan). Across all test sets, we find that the Tempo policy combined with an image-based artificial intelligence (AI) risk model is significantly more efficient than current regimens used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we show that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired trade-off between early detection and screening costs without training new policies. Finally, we demonstrate that Tempo policies based on AI-based risk models outperform Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs by advancing early detection while reducing overscreening. A reinforcement learning model can predict risk-based follow-up recommendations to improve early detection and reduce screening costs in breast cancer across diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Persist6578完成签到 ,获得积分10
5秒前
小胡爱科研完成签到 ,获得积分10
7秒前
12秒前
15秒前
止戈发布了新的文献求助10
18秒前
充电宝应助专注的猎豹采纳,获得10
19秒前
Persist完成签到 ,获得积分10
19秒前
开心的冰淇淋完成签到,获得积分10
20秒前
22秒前
34秒前
FashionBoy应助科研通管家采纳,获得10
35秒前
慕青应助开心的冰淇淋采纳,获得10
40秒前
47秒前
50秒前
ausue发布了新的文献求助10
51秒前
彭彭发布了新的文献求助10
56秒前
Owen应助彭彭采纳,获得10
1分钟前
完美世界应助彭彭采纳,获得10
1分钟前
1分钟前
硬汉的长强穴完成签到,获得积分10
1分钟前
1分钟前
子月之路完成签到,获得积分10
1分钟前
1分钟前
啊悫发布了新的文献求助10
1分钟前
1分钟前
托尔斯泰发布了新的文献求助10
1分钟前
寻道图强应助啊悫采纳,获得50
1分钟前
1分钟前
赘婿应助我是猪采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
我是猪发布了新的文献求助10
2分钟前
标致夏真完成签到 ,获得积分20
2分钟前
漠北发布了新的文献求助10
2分钟前
2分钟前
2分钟前
清逸之风完成签到 ,获得积分10
2分钟前
淡漠完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133930
求助须知:如何正确求助?哪些是违规求助? 2784829
关于积分的说明 7768641
捐赠科研通 2440175
什么是DOI,文献DOI怎么找? 1297284
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791