Optimizing risk-based breast cancer screening policies with reinforcement learning

强化学习 背景(考古学) 乳腺癌筛查 计算机科学 人工智能 乳腺癌 机器学习 癌症筛查 医学 乳腺摄影术 癌症 生物 内科学 古生物学
作者
Adam Yala,Peter G. Mikhael,Constance D. Lehman,Gigin Lin,Fredrik Strand,Yung‐Liang Wan,Kevin S. Hughes,Siddharth Satuluru,Thomas Kim,Imon Banerjee,Judy Wawira Gichoya,Hari Trivedi,Regina Barzilay
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (1): 136-143 被引量:65
标识
DOI:10.1038/s41591-021-01599-w
摘要

Screening programs must balance the benefit of early detection with the cost of overscreening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH; USA) and validated this dataset in held-out patients from MGH and external datasets from Emory University (Emory; USA), Karolinska Institute (Karolinska; Sweden) and Chang Gung Memorial Hospital (CGMH; Taiwan). Across all test sets, we find that the Tempo policy combined with an image-based artificial intelligence (AI) risk model is significantly more efficient than current regimens used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we show that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired trade-off between early detection and screening costs without training new policies. Finally, we demonstrate that Tempo policies based on AI-based risk models outperform Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs by advancing early detection while reducing overscreening. A reinforcement learning model can predict risk-based follow-up recommendations to improve early detection and reduce screening costs in breast cancer across diverse patient populations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感谢大哥的帮助完成签到 ,获得积分10
3秒前
酷波er应助标致的无极采纳,获得10
5秒前
5秒前
6秒前
Kate完成签到,获得积分10
6秒前
嘿嘿发布了新的文献求助10
9秒前
10秒前
2568269431完成签到 ,获得积分10
10秒前
11秒前
11秒前
灵巧剑心发布了新的文献求助10
12秒前
踏实的熠彤完成签到,获得积分10
12秒前
sun完成签到,获得积分10
12秒前
13秒前
xiajiahao发布了新的文献求助10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
车梓银完成签到 ,获得积分10
16秒前
科研通AI6应助Alanni采纳,获得10
16秒前
无限绮南发布了新的文献求助10
18秒前
18秒前
18秒前
JamesPei应助灵巧剑心采纳,获得10
19秒前
23秒前
24秒前
24秒前
Tree_QD完成签到 ,获得积分10
26秒前
标致的无极完成签到,获得积分20
26秒前
ajjdnd发布了新的文献求助10
28秒前
李洁发布了新的文献求助30
28秒前
干净寻冬应助科研通管家采纳,获得10
29秒前
ATIHSA88应助科研通管家采纳,获得10
29秒前
坦率灵槐应助科研通管家采纳,获得10
29秒前
AneyWinter66应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
30秒前
ATIHSA88应助科研通管家采纳,获得10
30秒前
30秒前
AneyWinter66应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995