清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimizing risk-based breast cancer screening policies with reinforcement learning

强化学习 背景(考古学) 乳腺癌筛查 计算机科学 人工智能 乳腺癌 机器学习 癌症筛查 医学 乳腺摄影术 癌症 生物 内科学 古生物学
作者
Adam Yala,Peter G. Mikhael,Constance D. Lehman,Gigin Lin,Fredrik Strand,Yung‐Liang Wan,Kevin S. Hughes,Siddharth Satuluru,Thomas Kim,Imon Banerjee,Judy Wawira Gichoya,Hari Trivedi,Regina Barzilay
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (1): 136-143 被引量:65
标识
DOI:10.1038/s41591-021-01599-w
摘要

Screening programs must balance the benefit of early detection with the cost of overscreening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH; USA) and validated this dataset in held-out patients from MGH and external datasets from Emory University (Emory; USA), Karolinska Institute (Karolinska; Sweden) and Chang Gung Memorial Hospital (CGMH; Taiwan). Across all test sets, we find that the Tempo policy combined with an image-based artificial intelligence (AI) risk model is significantly more efficient than current regimens used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we show that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired trade-off between early detection and screening costs without training new policies. Finally, we demonstrate that Tempo policies based on AI-based risk models outperform Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs by advancing early detection while reducing overscreening. A reinforcement learning model can predict risk-based follow-up recommendations to improve early detection and reduce screening costs in breast cancer across diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意灵完成签到,获得积分10
15秒前
今后应助淡定的过客采纳,获得10
38秒前
dolphin完成签到 ,获得积分0
49秒前
老石完成签到 ,获得积分10
1分钟前
砰砰完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
斯文败类应助joker采纳,获得10
3分钟前
3分钟前
sdjjis完成签到 ,获得积分10
3分钟前
joker发布了新的文献求助10
3分钟前
hwen1998完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
李健应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
曙光完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分0
5分钟前
如歌完成签到,获得积分10
5分钟前
5分钟前
披着羊皮的狼完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
蝎子莱莱xth完成签到,获得积分10
7分钟前
充电宝应助Barry采纳,获得10
7分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
7分钟前
Square完成签到,获得积分10
7分钟前
轻松戎发布了新的文献求助10
7分钟前
脑洞疼应助轻松戎采纳,获得10
8分钟前
8分钟前
8分钟前
勤奋的猫咪完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418435
求助须知:如何正确求助?哪些是违规求助? 4534151
关于积分的说明 14143199
捐赠科研通 4450380
什么是DOI,文献DOI怎么找? 2441186
邀请新用户注册赠送积分活动 1432941
关于科研通互助平台的介绍 1410307