已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing risk-based breast cancer screening policies with reinforcement learning

强化学习 背景(考古学) 乳腺癌筛查 计算机科学 人工智能 乳腺癌 机器学习 癌症筛查 医学 乳腺摄影术 癌症 生物 内科学 古生物学
作者
Adam Yala,Peter G. Mikhael,Constance D. Lehman,Gigin Lin,Fredrik Strand,Yung‐Liang Wan,Kevin S. Hughes,Siddharth Satuluru,Thomas Kim,Imon Banerjee,Judy Wawira Gichoya,Hari Trivedi,Regina Barzilay
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (1): 136-143 被引量:65
标识
DOI:10.1038/s41591-021-01599-w
摘要

Screening programs must balance the benefit of early detection with the cost of overscreening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH; USA) and validated this dataset in held-out patients from MGH and external datasets from Emory University (Emory; USA), Karolinska Institute (Karolinska; Sweden) and Chang Gung Memorial Hospital (CGMH; Taiwan). Across all test sets, we find that the Tempo policy combined with an image-based artificial intelligence (AI) risk model is significantly more efficient than current regimens used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we show that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired trade-off between early detection and screening costs without training new policies. Finally, we demonstrate that Tempo policies based on AI-based risk models outperform Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs by advancing early detection while reducing overscreening. A reinforcement learning model can predict risk-based follow-up recommendations to improve early detection and reduce screening costs in breast cancer across diverse patient populations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmd完成签到 ,获得积分10
刚刚
刚刚
3秒前
5秒前
9秒前
JamesPei应助请输入昵称采纳,获得10
10秒前
SI发布了新的文献求助10
11秒前
知知完成签到 ,获得积分10
12秒前
13秒前
bkagyin应助hvgjgfjhgjh采纳,获得10
13秒前
小川完成签到,获得积分10
17秒前
17秒前
指南针指北完成签到 ,获得积分10
18秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
田様应助科研通管家采纳,获得10
19秒前
19秒前
Orange应助科研通管家采纳,获得10
19秒前
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
21秒前
滴嘟滴嘟完成签到 ,获得积分10
22秒前
23秒前
喜悦的半青完成签到 ,获得积分10
25秒前
lana完成签到,获得积分10
25秒前
27秒前
hvgjgfjhgjh发布了新的文献求助10
27秒前
30秒前
lzy完成签到 ,获得积分10
32秒前
hvgjgfjhgjh完成签到,获得积分10
33秒前
kqhys完成签到,获得积分10
34秒前
liwhao完成签到,获得积分10
38秒前
游唐完成签到 ,获得积分10
38秒前
嘻嘻完成签到,获得积分10
41秒前
41秒前
广州小肥羊完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681089
求助须知:如何正确求助?哪些是违规求助? 5004322
关于积分的说明 15174896
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594437
邀请新用户注册赠送积分活动 1547542
关于科研通互助平台的介绍 1505470