亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing risk-based breast cancer screening policies with reinforcement learning

强化学习 背景(考古学) 乳腺癌筛查 计算机科学 人工智能 乳腺癌 机器学习 癌症筛查 医学 乳腺摄影术 癌症 生物 内科学 古生物学
作者
Adam Yala,Peter G. Mikhael,Constance D. Lehman,Gigin Lin,Fredrik Strand,Yung‐Liang Wan,Kevin S. Hughes,Siddharth Satuluru,Thomas Kim,Imon Banerjee,Judy Wawira Gichoya,Hari Trivedi,Regina Barzilay
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:28 (1): 136-143 被引量:65
标识
DOI:10.1038/s41591-021-01599-w
摘要

Screening programs must balance the benefit of early detection with the cost of overscreening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH; USA) and validated this dataset in held-out patients from MGH and external datasets from Emory University (Emory; USA), Karolinska Institute (Karolinska; Sweden) and Chang Gung Memorial Hospital (CGMH; Taiwan). Across all test sets, we find that the Tempo policy combined with an image-based artificial intelligence (AI) risk model is significantly more efficient than current regimens used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we show that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired trade-off between early detection and screening costs without training new policies. Finally, we demonstrate that Tempo policies based on AI-based risk models outperform Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs by advancing early detection while reducing overscreening. A reinforcement learning model can predict risk-based follow-up recommendations to improve early detection and reduce screening costs in breast cancer across diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
46秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
倪妮发布了新的文献求助10
1分钟前
科研通AI6应助倪妮采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
从容芮给嘉心糖的求助进行了留言
2分钟前
2分钟前
2分钟前
2分钟前
drtianyunhong完成签到,获得积分10
2分钟前
Krim完成签到 ,获得积分0
2分钟前
情怀应助科研通管家采纳,获得10
3分钟前
YifanWang完成签到,获得积分0
3分钟前
科研通AI5应助倪妮采纳,获得10
3分钟前
3分钟前
倪妮发布了新的文献求助10
4分钟前
从容芮完成签到,获得积分0
4分钟前
5分钟前
5分钟前
Hong发布了新的文献求助10
5分钟前
大模型应助小冯看不懂采纳,获得10
5分钟前
6分钟前
6分钟前
ccm应助Hong采纳,获得10
6分钟前
MCRing完成签到 ,获得积分10
7分钟前
7分钟前
xiliyusheng发布了新的文献求助10
7分钟前
情怀应助xiliyusheng采纳,获得10
7分钟前
老石完成签到 ,获得积分10
8分钟前
Suraim完成签到,获得积分10
8分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
9分钟前
科研通AI5应助科研通管家采纳,获得10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
9分钟前
里昂义务发布了新的文献求助30
9分钟前
kuoping完成签到,获得积分0
9分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127551
求助须知:如何正确求助?哪些是违规求助? 4330548
关于积分的说明 13493426
捐赠科研通 4166206
什么是DOI,文献DOI怎么找? 2283821
邀请新用户注册赠送积分活动 1284846
关于科研通互助平台的介绍 1224934