弗里德尔-克拉夫茨反应
分子内力
对映选择合成
立体中心
催化作用
烷基化
化学
筑地反应
烯丙基重排
立体化学
组合化学
质子化
有机化学
离子
作者
Lu Xiao,Bo Li,Fan Xiao,Cong Fu,Liang Wei,Yanfeng Dang,Xiu‐Qin Dong,Chun‐Jiang Wang
出处
期刊:Chemical Science
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:13 (17): 4801-4812
被引量:34
摘要
The development of enantioselective annulation reactions using readily available substrates for the construction of structurally and stereochemically diverse heterocycles is a compelling topic in diversity-oriented synthesis. Herein, we report efficient catalytic asymmetric formal 1,3-dipolar (3 + 4) cycloadditions of azomethine ylides with 4-indolyl allylic carbonates for the construction of azepino[3,4,5-cd]-indoles fused with a challenging seven-membered N-heterocycle, a frequently occurring tricyclic indole scaffold in bioactive compounds and pharmaceuticals. Through cooperative Cu/Ir-catalyzed asymmetric allylic alkylation followed by intramolecular Friedel-Crafts reaction, an array of azepino[3,4,5-cd]-indoles were obtained in good yields with excellent diastereo-/enantioselective control. More importantly, the full stereodivergence of this transformation was established via synergistic catalysis followed by acid-promoted epimerization, and up to eight stereoisomers of the cycloadducts bearing three stereogenic centers could be predictably achieved from the same set of starting materials for the first time. Quantum mechanical computations established a plausible mechanism for the synergistic Cu/Ir catalysis to stereodivergently introduce two vicinal stereocenters whose stereochemical information is remotely delivered across the fused azepine ring to control the third chiral center. Epimerization of the last center involves protonation-enabled reversal of the thermodynamically controlled relative configuration.
科研通智能强力驱动
Strongly Powered by AbleSci AI