A Novel Pyramid Winding for PCB Planar Inductors With Fewer Copper Layers and Lower AC Copper Loss

电感器 铜损耗 印刷电路板 平面的 铁氧体磁芯 电气工程 棱锥(几何) 拓扑(电路) 工程类 电感 材料科学 电磁线圈 计算机科学 数学 几何学 冶金 电压 计算机图形学(图像)
作者
Zheyuan Yu,Xu Yang,Gaohao Wei,Yongxing Zhou,Yao Xiao,Mengjie Qin,Jiarui Wu,Kangping Wang,Wenjie Chen,Laili Wang
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:37 (10): 11461-11468 被引量:5
标识
DOI:10.1109/tpel.2022.3164994
摘要

Relying on the advantages of small size, good controllability, and consistency, printed circuit board (PCB) inductors are being widely used. For PCB inductors, reducing copper loss is one of the key issues. Although some research works focus on fringing effect in PCB planar winding, there are few methods to reduce proximity loss for PCB inductor. Regarding the abovementioned issues, this letter first improves the Ferreira's 1-D copper loss model to accommodate the core feature of PCB winding: variable number of turns per layer. With this model, pyramid theorem is proposed that putting the layer with fewer turns into positions farther away from the air gaps can lower the total winding loss. Based on the theorem, this letter proposes a novel PCB inductor-winding structure named pyramid winding, which has fewer (or equal) turns on layers farther from air gaps. Pyramid winding has less copper loss, fewer copper layers, smaller size, and lower cost. In the experiment, inductor prototypes with the same six turns and ferrite pot cores but different PCB winding arrangements are built for a 300-kHz 2700-W LLC converter. Tests on inductor resistance and converter efficiency are done, and the pyramid theorem and the effectiveness of pyramid winding are verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andyxrz发布了新的文献求助30
1秒前
酒尚温完成签到,获得积分10
1秒前
1秒前
2秒前
Paul完成签到,获得积分10
2秒前
冰冰完成签到 ,获得积分10
2秒前
木木发布了新的文献求助10
2秒前
3秒前
涛浪完成签到,获得积分10
3秒前
上官若男应助yzy采纳,获得10
4秒前
会飞的小白完成签到,获得积分10
4秒前
4秒前
8564523发布了新的文献求助10
4秒前
珈蓝完成签到,获得积分10
5秒前
吉祥完成签到,获得积分0
5秒前
5秒前
6秒前
开心尔云完成签到,获得积分10
6秒前
在水一方应助羽言采纳,获得10
6秒前
6秒前
HZW发布了新的文献求助20
7秒前
不厌关注了科研通微信公众号
7秒前
labxgr完成签到,获得积分10
7秒前
7秒前
7秒前
吱嗷赵完成签到,获得积分20
7秒前
MADKAI发布了新的文献求助20
8秒前
木木完成签到,获得积分10
8秒前
8秒前
Jenny应助强健的月饼采纳,获得10
9秒前
记号完成签到,获得积分10
9秒前
玛卡巴卡完成签到,获得积分10
9秒前
KissesU完成签到 ,获得积分10
10秒前
大厨懒洋洋完成签到,获得积分10
10秒前
10秒前
咕噜仔发布了新的文献求助10
11秒前
Nelson_Foo完成签到,获得积分10
11秒前
Ll发布了新的文献求助10
11秒前
@_@完成签到,获得积分10
12秒前
hhh发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672