Interpretable machine learning models for crime prediction

可解释性 变量(数学) 变量 人口 机器学习 人工智能 计算机科学 预测建模 回归分析 计量经济学 对比度(视觉) 犯罪分析 数学 心理学 犯罪学 人口学 数学分析 社会学
作者
Xu Zhang,Lin Liu,Minxuan Lan,Guangwen Song,Luzi Xiao,Jianguo Chen
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:94: 101789-101789 被引量:61
标识
DOI:10.1016/j.compenvurbsys.2022.101789
摘要

The relationship between crime patterns and associated variables has drawn a lot of attention. These variables play a critical role in crime prediction. While traditional regression models are capable of revealing the contribution of the variables, they are not optimal for crime prediction. In contrast, machine learning models are more effective for crime prediction, but most of them cannot estimate the contribution of each individual variable. This study aims to overcome this limitation by taking advantage of the interpretability of advanced machine learning models. Based on the routine activity theory and crime pattern theory, this study selects 17 variables for the crime prediction. The XGBoost algorithm is adopted to train the prediction model. A post-hoc interpretable method, Shapley additive explanation (SHAP), is used to discern the contribution of individual variables. A variable with a higher SHAP value has a higher contribution to the crime prediction model. In addition to the global model for the entire area, a local model is calibrated at each study unit, revealing the spatial variation of the variables' unique contributions. Among all 17 variables used in this model, the proportion of the non-local population and the ambient population aged 25–44 contribute more than other variables in predicting crime. The more the ambient population aged 25–44 in the area, the more the public thefts. Additionally, local SHAP values are mapped to demonstrate each variable's contribution to the crime prediction model across the study area. The results of the local models can help the police tackle the most important factors at each location, while the global model identifies the important factors for the entire region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搬砖王完成签到,获得积分20
1秒前
祺祺发布了新的文献求助10
1秒前
静一完成签到,获得积分10
2秒前
聆(*^_^*)发布了新的文献求助10
3秒前
3秒前
Orange应助灵巧绿海采纳,获得20
4秒前
5秒前
5秒前
6秒前
6秒前
Oliver完成签到,获得积分10
6秒前
Beyond095完成签到,获得积分10
6秒前
坚强亦丝应助BY采纳,获得10
7秒前
8秒前
CM发布了新的文献求助10
8秒前
8秒前
毛豆应助菜饼采纳,获得10
10秒前
10秒前
小蘑菇应助鲸落采纳,获得10
14秒前
归尘发布了新的文献求助10
16秒前
18秒前
毛豆应助扭一扭泡一泡采纳,获得10
19秒前
19秒前
19秒前
20秒前
21秒前
21秒前
阿飞发布了新的文献求助10
23秒前
Hello应助Vancy采纳,获得30
23秒前
哈哈哈发布了新的文献求助10
24秒前
4311发布了新的文献求助10
24秒前
LiXQ发布了新的文献求助20
24秒前
菜菜发布了新的文献求助10
25秒前
今后应助司空豁采纳,获得10
27秒前
tent01完成签到,获得积分10
27秒前
科研通AI2S应助SunnyZjw采纳,获得10
28秒前
31秒前
32秒前
33秒前
可爱的函函应助Siwen采纳,获得10
34秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Standard Specification for Polyolefin Chopped Strands for Use in Concrete 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416935
求助须知:如何正确求助?哪些是违规求助? 3018754
关于积分的说明 8884993
捐赠科研通 2705969
什么是DOI,文献DOI怎么找? 1484010
科研通“疑难数据库(出版商)”最低求助积分说明 685870
邀请新用户注册赠送积分活动 681074