Fast Locality Discriminant Analysis with Adaptive Manifold Embedding.

非线性降维 地点 线性判别分析 降维 子空间拓扑 数据点 计算机科学 人工智能 模式识别(心理学) 维数之咒 判别式 噪音(视频) 数学 算法
作者
Feiping Nie,Xiaowei Zhao,Rong Wang,Xuelong Li
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:PP
标识
DOI:10.1109/tpami.2022.3162498
摘要

Linear discriminant analysis (LDA) has been proven to be effective in dimensionality reduction. However, the performance of LDA depends on the consistency assumption of the global structure and the local structure. Some work extended LDA along this line of research and proposed local formulations of LDA. Unfortunately, the learning scheme of these algorithms is suboptimal in that the intrinsic relationship between data points is pre-learned in the original space, which is usually affected by the noise and redundant features. Besides, the time cost is relatively high. To alleviate these drawbacks, we propose a Fast Locality Discriminant Analysis framework (FLDA), which has three advantages: (1) It can divide a non-Gaussian distribution class into many sub-blocks that obey Gaussian distributions by using the anchor-based strategy. (2) It captures the manifold structure of data by learning the fuzzy membership relationship between data points and the corresponding anchor points, which can reduce computation time. (3) The weights between data points and anchor points are adaptively updated in the subspace where the irrelevant information and the noise in high-dimensional space have been effectively suppressed. Extensive experiments on toy, benchmark and imbalanced data sets demonstrate the efficiency and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈绾完成签到,获得积分10
刚刚
加鱼发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
yifanchen发布了新的文献求助10
1秒前
科研通AI2S应助daheeeee采纳,获得10
2秒前
hope完成签到,获得积分20
2秒前
up应助xiaofeng采纳,获得10
3秒前
bkagyin应助My采纳,获得10
3秒前
xxl发布了新的文献求助10
4秒前
Chelsea发布了新的文献求助10
4秒前
签到完成签到,获得积分10
4秒前
5秒前
汪洋发布了新的文献求助10
5秒前
6秒前
6秒前
DPH完成签到 ,获得积分10
6秒前
多情的夜安完成签到,获得积分10
6秒前
菜大鸭完成签到,获得积分10
7秒前
李金龙完成签到,获得积分10
7秒前
kevinjy完成签到,获得积分10
8秒前
8秒前
8秒前
寂寞的白筠完成签到,获得积分10
9秒前
9秒前
冷烟浮发布了新的文献求助10
9秒前
菜大鸭发布了新的文献求助10
10秒前
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得20
11秒前
ddd应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
LEMONS应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128