A dual-path dynamic directed graph convolutional network for air quality prediction

计算机科学 图形 空气质量指数 路径(计算) 数据挖掘 动态网络分析 动态数据 对偶(语法数字) 水准点(测量) 人工智能 理论计算机科学 地图学 气象学 地理 文学类 程序设计语言 艺术 计算机网络
作者
Xiao Xiao,Zhiling Jin,Shuo Wang,Jing Xu,Ziyan Peng,Rui Wang,Wei Shao,Yilong Hui
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:827: 154298-154298 被引量:31
标识
DOI:10.1016/j.scitotenv.2022.154298
摘要

Accurate air quality prediction can help cope with air pollution and improve the life quality. With the development of the deployments of low-cost air quality sensors, increasing data related to air quality has provided chances to find out more accurate prediction methods. Air quality is affected by many external factors such as the position, wind, meteorological information, and so on. Meanwhile, these factors are spatio-temporal dynamic and there are many dynamic contextual relationships between them. Many methods for air quality prediction do not consider these complex spatio-temporal correlations and dynamic contextual relationships. In this paper, we propose a dual-path dynamic directed graph convolutional network (DP-DDGCN) for air quality prediction. We first create a dual-path transposed dynamic directed graph according to static distance relationships of stations and the dynamic relationships generated by wind speed and directions. Then based on the dual-path dynamic directed graph, we can capture the dynamic spatial dependencies more comprehensively. After that we apply gated recurrent units (GRUs) and add the future meteorological features, to extract the complex temporal dependencies of historical air quality data. Using dual-path dynamic directed graph blocks and the GRUs, we finally construct a dynamic spatio-temporal gated recurrent block to capture the dynamic spatio-temporal contextual correlations. Based on real-world datasets, which record a large amount of PM2.5 concentration data, we compare the proposed model with the benchmark models. The experimental results show that our proposed model has the best performance in predicting the PM2.5 concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄的松完成签到,获得积分10
1秒前
aIARLAE发布了新的文献求助10
1秒前
1秒前
烟花应助学习怪采纳,获得10
1秒前
1秒前
1秒前
卡卡完成签到,获得积分10
2秒前
2秒前
执着夏岚发布了新的文献求助10
2秒前
3秒前
3秒前
只菌完成签到,获得积分10
3秒前
5秒前
5秒前
英姑应助幺零零采纳,获得10
5秒前
无奈烤鸡完成签到,获得积分10
6秒前
躺赢发布了新的文献求助10
6秒前
7秒前
武雨寒发布了新的文献求助10
8秒前
小小完成签到 ,获得积分10
8秒前
长乐发布了新的文献求助30
8秒前
小白发布了新的文献求助10
9秒前
八宝粥完成签到,获得积分10
9秒前
852应助昨天采纳,获得10
9秒前
少夫人应助ljw采纳,获得10
10秒前
11秒前
李白白应助Selenge采纳,获得10
11秒前
11秒前
zys发布了新的文献求助10
11秒前
12秒前
Singularity应助keyanxiaobai采纳,获得10
13秒前
直率的海云完成签到,获得积分10
13秒前
暴躁的纸飞机完成签到,获得积分10
14秒前
月谣完成签到,获得积分20
14秒前
14秒前
天天快乐应助坦率白竹采纳,获得10
15秒前
15秒前
15秒前
彭于晏应助强国复兴采纳,获得10
15秒前
xy完成签到 ,获得积分20
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123390
求助须知:如何正确求助?哪些是违规求助? 2773951
关于积分的说明 7720148
捐赠科研通 2429656
什么是DOI,文献DOI怎么找? 1290409
科研通“疑难数据库(出版商)”最低求助积分说明 621833
版权声明 600251