Research on control method of upper limb exoskeleton based on mixed perception model

外骨骼 弹道 人工智能 运动学 模拟 计算机科学 运动捕捉 人工神经网络 康复 机器人 机器人学 工程类 运动(物理) 物理医学与康复 计算机视觉 物理疗法 医学 物理 经典力学 天文
作者
Wendong Wang,Junbo Zhang,Dezhi Kong,Shibin Su,Xiao Yuan,Chengzhi Zhao
出处
期刊:Robotica [Cambridge University Press]
卷期号:40 (10): 3669-3685 被引量:17
标识
DOI:10.1017/s0263574722000480
摘要

Abstract As one of the research hotspots in the field of rehabilitation robotics, the upper limb exoskeleton robot has been widely used in the field of rehabilitation. However, the existing methods cannot comprehensively and accurately reflect the motion state of patients, which may lead to overtraining and secondary injury of patients in the process of rehabilitation training. In this paper, an upper limb exoskeleton control method based on mixed perception model of motion intention and intensity is proposed, which is based on the 6 degree-of-freedom upper limb rehabilitation exoskeleton in the laboratory. First, the kinematic information and heart rate information in the rehabilitation process of patients are collected, corresponding to patients’ motion intention and motion intensity, and fused to obtain the mixed perception vector. Second, the motion perception model based on long short-term memory neural network is established to realize the prediction of upper limb motion trajectory of patients and compared with back-propagation neural network to prove its effectiveness. Finally, the control system is built, and both offline and online test of the control method proposed are implemented. The experimental results show that the method can achieve comprehensive motion state perception of patients, realize real-time and accurate prediction trajectory according to human motion intention and intensity. The average prediction accuracy is 95.3%, and predicted joint angle error is less than 5 degrees. Therefore, the control method based on mixed perception model has good robustness and universality, which provides a new method for the active control of upper limb exoskeleton.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ranccy发布了新的文献求助30
1秒前
flow完成签到,获得积分10
1秒前
鱼粉发布了新的文献求助10
2秒前
夜城如梦醉完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
水凝胶发布了新的文献求助10
4秒前
4秒前
隐形曼青应助骡子采纳,获得10
5秒前
hbhbj发布了新的文献求助10
6秒前
关我屁事完成签到 ,获得积分10
6秒前
白糖完成签到,获得积分10
6秒前
林泽华发布了新的文献求助10
7秒前
1s完成签到,获得积分10
8秒前
8秒前
9秒前
旋光活性完成签到 ,获得积分10
10秒前
Rufus发布了新的文献求助10
10秒前
Air云完成签到,获得积分10
11秒前
脑洞疼应助栀栀云安采纳,获得10
11秒前
Jiro完成签到,获得积分10
11秒前
tleeny发布了新的文献求助10
13秒前
hbhbj发布了新的文献求助10
13秒前
RLV完成签到,获得积分10
14秒前
头不大完成签到 ,获得积分10
15秒前
16秒前
STAR完成签到,获得积分10
18秒前
诚心的梅发布了新的文献求助10
19秒前
cqnuly完成签到,获得积分10
21秒前
hbhbj发布了新的文献求助10
21秒前
22秒前
jincen完成签到,获得积分10
22秒前
头不大关注了科研通微信公众号
23秒前
STAR发布了新的文献求助10
23秒前
23秒前
23秒前
aikeyan完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305985
求助须知:如何正确求助?哪些是违规求助? 4451844
关于积分的说明 13853249
捐赠科研通 4339378
什么是DOI,文献DOI怎么找? 2382507
邀请新用户注册赠送积分活动 1377530
关于科研通互助平台的介绍 1345146