Research on control method of upper limb exoskeleton based on mixed perception model

外骨骼 弹道 人工智能 运动学 模拟 计算机科学 运动捕捉 人工神经网络 康复 机器人 机器人学 工程类 运动(物理) 物理医学与康复 计算机视觉 物理疗法 医学 物理 经典力学 天文
作者
Wendong Wang,Junbo Zhang,Dezhi Kong,Shibin Su,Xiao Yuan,Chengzhi Zhao
出处
期刊:Robotica [Cambridge University Press]
卷期号:40 (10): 3669-3685 被引量:17
标识
DOI:10.1017/s0263574722000480
摘要

Abstract As one of the research hotspots in the field of rehabilitation robotics, the upper limb exoskeleton robot has been widely used in the field of rehabilitation. However, the existing methods cannot comprehensively and accurately reflect the motion state of patients, which may lead to overtraining and secondary injury of patients in the process of rehabilitation training. In this paper, an upper limb exoskeleton control method based on mixed perception model of motion intention and intensity is proposed, which is based on the 6 degree-of-freedom upper limb rehabilitation exoskeleton in the laboratory. First, the kinematic information and heart rate information in the rehabilitation process of patients are collected, corresponding to patients’ motion intention and motion intensity, and fused to obtain the mixed perception vector. Second, the motion perception model based on long short-term memory neural network is established to realize the prediction of upper limb motion trajectory of patients and compared with back-propagation neural network to prove its effectiveness. Finally, the control system is built, and both offline and online test of the control method proposed are implemented. The experimental results show that the method can achieve comprehensive motion state perception of patients, realize real-time and accurate prediction trajectory according to human motion intention and intensity. The average prediction accuracy is 95.3%, and predicted joint angle error is less than 5 degrees. Therefore, the control method based on mixed perception model has good robustness and universality, which provides a new method for the active control of upper limb exoskeleton.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MM11111发布了新的文献求助10
刚刚
spring发布了新的文献求助10
刚刚
草莓熊完成签到,获得积分10
1秒前
爆米花应助lihua采纳,获得10
1秒前
JamesPei应助lszhw采纳,获得10
1秒前
1秒前
策略完成签到,获得积分10
2秒前
无花果应助王婷采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得50
2秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
wop111应助科研通管家采纳,获得20
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
Song完成签到,获得积分10
3秒前
思源应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得30
4秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得30
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269