Research on control method of upper limb exoskeleton based on mixed perception model

外骨骼 弹道 人工智能 运动学 模拟 计算机科学 运动捕捉 人工神经网络 康复 机器人 机器人学 工程类 运动(物理) 物理医学与康复 计算机视觉 物理疗法 医学 物理 经典力学 天文
作者
Wendong Wang,Junbo Zhang,Dezhi Kong,Shibin Su,Xiao Yuan,Chengzhi Zhao
出处
期刊:Robotica [Cambridge University Press]
卷期号:40 (10): 3669-3685 被引量:17
标识
DOI:10.1017/s0263574722000480
摘要

Abstract As one of the research hotspots in the field of rehabilitation robotics, the upper limb exoskeleton robot has been widely used in the field of rehabilitation. However, the existing methods cannot comprehensively and accurately reflect the motion state of patients, which may lead to overtraining and secondary injury of patients in the process of rehabilitation training. In this paper, an upper limb exoskeleton control method based on mixed perception model of motion intention and intensity is proposed, which is based on the 6 degree-of-freedom upper limb rehabilitation exoskeleton in the laboratory. First, the kinematic information and heart rate information in the rehabilitation process of patients are collected, corresponding to patients’ motion intention and motion intensity, and fused to obtain the mixed perception vector. Second, the motion perception model based on long short-term memory neural network is established to realize the prediction of upper limb motion trajectory of patients and compared with back-propagation neural network to prove its effectiveness. Finally, the control system is built, and both offline and online test of the control method proposed are implemented. The experimental results show that the method can achieve comprehensive motion state perception of patients, realize real-time and accurate prediction trajectory according to human motion intention and intensity. The average prediction accuracy is 95.3%, and predicted joint angle error is less than 5 degrees. Therefore, the control method based on mixed perception model has good robustness and universality, which provides a new method for the active control of upper limb exoskeleton.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲奇饼干发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
katsuras发布了新的文献求助10
刚刚
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
顾矜应助Paradox采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
Lyue完成签到,获得积分10
3秒前
3秒前
安详绿草发布了新的文献求助10
3秒前
TTTHANKS完成签到 ,获得积分10
3秒前
无限连发布了新的文献求助200
3秒前
无奈的非笑完成签到,获得积分10
3秒前
3秒前
3秒前
乐乐应助AKM采纳,获得10
4秒前
4秒前
小蘑菇应助蒋瑞轩采纳,获得10
4秒前
知不道完成签到,获得积分10
4秒前
6680668发布了新的文献求助10
4秒前
迷人外绣完成签到,获得积分20
4秒前
啦啦啦啦啦完成签到,获得积分10
4秒前
5秒前
田様应助贤惠的鼠标采纳,获得10
5秒前
5秒前
无限的续完成签到 ,获得积分10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406