Quantum Effects Enter Semiconductor-Based SERS: Multiresonant MoO3·xH2O Quantum Dots Enabling Direct, Sensitive SERS Detection of Small Inorganic Molecules

玻尔半径 化学 半导体 量子点 拉曼散射 分子 纳米技术 量子 化学物理 光电子学 拉曼光谱 材料科学 物理 量子力学 有机化学
作者
Ge Song,Hongzhao Sun,Jian Chen,Zhigang Chen,Boyang Liu,Zhenghui Liu,Shan Cong,Zhigang Zhao
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (12): 5048-5054 被引量:28
标识
DOI:10.1021/acs.analchem.1c05142
摘要

There is keen research interest in building highly effective semiconductor-based surface-enhanced Raman scattering (SERS) platforms, due to their selectivity for many probe molecules and suitability for complex scenario applications. However, current tuning approaches have not yet been successful in creating semiconductor-based SERS sensors for small inorganic molecules, due to the challenge of creating sufficient SERS enhancement in semiconductors. Here, we demonstrate the use of MoO3·xH2O quantum dots (QDs), to achieve direct and sensitive fingerprinting of the inorganic species hydrazine, which is a first attempt in semiconductor-based SERS research, as well as various other probe molecules. The resulting SERS platform that uses QDs with average size of 2.2 nm could successfully detect the signal of hydrazine with a limit of detection estimated to be around 4 × 10–5 M, significantly lowering the detectable concentration by at least 1000-fold, in sharp contrast to the weak performance of 10 and 100 nm particles, demonstrating that quantum size effect triggered by small particle size below the Bohr radius is crucially responsible for high SERS activity. The significantly enhanced SERS activity is a result of vibronically coupled multipathway, highly efficient charge-transfer resonances induced by the divergence of energy states in quantum-sized MoO3·xH2O. This is a proof-of-concept demonstration of the exploitation of quantum size effect, toward significantly enhanced intrinsic SERS activity in semiconductor-based SERS materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心梦山发布了新的文献求助10
刚刚
科研通AI2S应助文艺烧鹅采纳,获得10
1秒前
今后应助踏实的白羊采纳,获得100
1秒前
1秒前
小小完成签到,获得积分10
2秒前
zhouxw27完成签到,获得积分10
2秒前
醉熏的伊完成签到,获得积分10
5秒前
aaaabc完成签到 ,获得积分10
7秒前
7秒前
虚幻傲珊发布了新的文献求助10
7秒前
10秒前
changping应助畅快的觅风采纳,获得10
11秒前
11秒前
12秒前
Dr_J发布了新的文献求助10
15秒前
16秒前
赵小满发布了新的文献求助10
17秒前
17秒前
牛牛发布了新的文献求助10
18秒前
20秒前
21秒前
文艺烧鹅完成签到,获得积分20
22秒前
24秒前
chlc6973完成签到,获得积分10
24秒前
24秒前
25秒前
高高完成签到,获得积分10
25秒前
Cloud发布了新的文献求助10
26秒前
26秒前
yaooo完成签到 ,获得积分10
27秒前
何东霖发布了新的文献求助10
27秒前
药学小团子完成签到,获得积分10
28秒前
29秒前
dyc发布了新的文献求助10
29秒前
无昵称完成签到 ,获得积分10
30秒前
小土豆完成签到 ,获得积分10
30秒前
你好发布了新的文献求助30
31秒前
31秒前
何东霖完成签到,获得积分10
33秒前
wjswift完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295803
求助须知:如何正确求助?哪些是违规求助? 4445172
关于积分的说明 13835666
捐赠科研通 4329791
什么是DOI,文献DOI怎么找? 2376755
邀请新用户注册赠送积分活动 1372067
关于科研通互助平台的介绍 1337408