Quantum Effects Enter Semiconductor-Based SERS: Multiresonant MoO3·xH2O Quantum Dots Enabling Direct, Sensitive SERS Detection of Small Inorganic Molecules

玻尔半径 化学 半导体 量子点 拉曼散射 分子 纳米技术 量子 化学物理 光电子学 拉曼光谱 材料科学 物理 量子力学 有机化学
作者
Ge Song,Hongzhao Sun,Jian Chen,Zhigang Chen,Boyang Liu,Zhenghui Liu,Shan Cong,Zhigang Zhao
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (12): 5048-5054 被引量:28
标识
DOI:10.1021/acs.analchem.1c05142
摘要

There is keen research interest in building highly effective semiconductor-based surface-enhanced Raman scattering (SERS) platforms, due to their selectivity for many probe molecules and suitability for complex scenario applications. However, current tuning approaches have not yet been successful in creating semiconductor-based SERS sensors for small inorganic molecules, due to the challenge of creating sufficient SERS enhancement in semiconductors. Here, we demonstrate the use of MoO3·xH2O quantum dots (QDs), to achieve direct and sensitive fingerprinting of the inorganic species hydrazine, which is a first attempt in semiconductor-based SERS research, as well as various other probe molecules. The resulting SERS platform that uses QDs with average size of 2.2 nm could successfully detect the signal of hydrazine with a limit of detection estimated to be around 4 × 10–5 M, significantly lowering the detectable concentration by at least 1000-fold, in sharp contrast to the weak performance of 10 and 100 nm particles, demonstrating that quantum size effect triggered by small particle size below the Bohr radius is crucially responsible for high SERS activity. The significantly enhanced SERS activity is a result of vibronically coupled multipathway, highly efficient charge-transfer resonances induced by the divergence of energy states in quantum-sized MoO3·xH2O. This is a proof-of-concept demonstration of the exploitation of quantum size effect, toward significantly enhanced intrinsic SERS activity in semiconductor-based SERS materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Leo963852完成签到 ,获得积分10
1秒前
研友_Z729Mn完成签到,获得积分10
2秒前
anti1988完成签到,获得积分10
2秒前
unowhoiam完成签到 ,获得积分10
2秒前
活泼的绿草完成签到,获得积分10
3秒前
小二郎发布了新的文献求助10
3秒前
大大大娇搞科研完成签到 ,获得积分10
5秒前
王溪曼完成签到 ,获得积分10
6秒前
流星雨发布了新的文献求助10
7秒前
caffeine应助月亮采纳,获得10
9秒前
阿狸狸狸狸不开完成签到 ,获得积分10
9秒前
前程似锦完成签到 ,获得积分10
10秒前
phg021发布了新的文献求助10
10秒前
lixiangrui110完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
胡子发布了新的文献求助10
12秒前
sissi应助nieinei采纳,获得10
13秒前
机智的皮皮虾完成签到,获得积分10
14秒前
Ted完成签到,获得积分10
14秒前
HAPPY发布了新的文献求助10
14秒前
GHL完成签到,获得积分10
15秒前
15秒前
ray完成签到,获得积分10
16秒前
17秒前
xiaohunagya完成签到,获得积分10
19秒前
苏夏完成签到 ,获得积分10
19秒前
smallfish完成签到,获得积分10
19秒前
20秒前
yep完成签到,获得积分10
20秒前
阳光下的星星完成签到,获得积分10
22秒前
没事哒发布了新的文献求助10
24秒前
25秒前
26秒前
陈豆豆完成签到 ,获得积分10
26秒前
胡子完成签到,获得积分20
28秒前
jiabu完成签到,获得积分10
29秒前
舒心小猫咪完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175