Multiparametric MRI-based radiomics for the prediction of microvascular invasion in hepatocellular carcinoma

列线图 医学 无线电技术 肝细胞癌 磁共振成像 放射科 逻辑回归 单变量分析 多元分析 肿瘤科 内科学
作者
Tao Jiang,Shuai He,Huazhe Yang,Yue Dong,Tao Yu,Yahong Luo,Xiran Jiang
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (2): 456-466 被引量:6
标识
DOI:10.1177/02841851221080830
摘要

Preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is essential in obtaining a successful surgical treatment, in decreasing recurrence, and in improving survival.To investigate the value of multiparametric magnetic resonance imaging (MRI)-based radiomics in the prediction of peritumoral MVI in HCC.A total of 102 patient with pathologically proven HCC after surgical resection from June 2014 to March 2018 were enrolled in this retrospective study. Histological analysis of resected specimens confirmed positive MVI in 48 patients and negative MVI in 54 patients. Radiomics features were extracted from four MRI sequences and selected with the least absolute shrinkage and selection operator (LASSO) regression and used to analyze the tumoral and peritumoral regions for MVI. Univariate logistic regression was employed to identify the most important clinical factors, which were integrated with the radiomics signature to develop a nomogram.In total, 11 radiomics features were selected and used to build the radiomics signature. The serum level of alpha-fetoprotein was identified as the clinical factor with the highest predictive value. The developed nomogram achieved the highest AUC in predicting MVI status. The decision curve analysis confirmed the potential clinical utility of the proposed nomogram.The multiparametric MRI-based radiomics nomogram is a promising tool for the preoperative diagnosis of peritumoral MVI in HCCs and helps determine the appropriate medical or surgical therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助Rrr采纳,获得10
1秒前
新的心跳发布了新的文献求助10
1秒前
NN应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得30
3秒前
shouyu29应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得60
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研小白应助科研通管家采纳,获得40
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
活力绮兰应助科研通管家采纳,获得10
3秒前
感动秋完成签到 ,获得积分10
4秒前
4秒前
4秒前
gzsy完成签到 ,获得积分10
5秒前
5秒前
sexing发布了新的文献求助10
5秒前
丘比特应助koi采纳,获得10
5秒前
Sang完成签到 ,获得积分10
7秒前
7秒前
8秒前
金色年华完成签到,获得积分10
8秒前
丘比特应助daniel采纳,获得10
9秒前
我是老大应助szl采纳,获得10
10秒前
10秒前
赤邪完成签到,获得积分20
10秒前
小蘑菇应助复杂曼梅采纳,获得10
11秒前
12秒前
sexing完成签到,获得积分20
12秒前
你好发布了新的文献求助150
13秒前
13秒前
BareBear应助wfc采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808