Fine-grained interactive attention learning for semi-supervised white blood cell classification

计算机科学 人工智能 白细胞 机器学习 支持向量机 模式识别(心理学) 过程(计算) 监督学习 人类血液 标记数据 医学 生理学 人工神经网络 内科学 操作系统
作者
Yan Ha,Zeyu Du,Junfeng Tian
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:75: 103611-103611 被引量:26
标识
DOI:10.1016/j.bspc.2022.103611
摘要

White blood cell (WBC) is an essential part of the human immune system. To diagnose blood diseases, hematologists have to think about the WBC information. For instance, the number of each type of WBCs often implies the health condition of the human body. Thus, the classification of white blood cell images plays a significant role in the medical diagnosis process. However, manual WBC inspection is time-consuming and labor-intensive for experts, which means automated classification methods are needed for WBC recognition. Another problem is that the traditional automatic recognition system needs a large amount of annotated medical images for training, which is highly costly. In this respect, the semi-supervised learning framework has recently been widely used for medical diagnosis due to its specificity, which can explore relevant information from massive unlabeled data. In this study, a novel semi-supervised white blood cell classification method is proposed, named by Fine-grained Interactive Attention Learning (FIAL). It consists of a Semi-Supervised Teacher-Student (SSTS) module and a Fine-Grained Interactive Attention (FGIA) mechanism. In detail, SSTS employs limited labeled WBC images and generates predicted probability vectors for a large amount of unlabeled WBC samples, like a human. After top-k selection in predicted probabilities, the efficient data can be exploited from unlabeled WBC images for training. With a very small amount of annotated WBC images, FIAL achieves an average accuracy of 93.2% on BCCD dataset when giving 75 labeled images for each category, which sufficiently elaborates our excellent capability on semi-supervised white blood cell image classification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chaserlife完成签到,获得积分10
1秒前
5秒前
6秒前
6秒前
yanmu2010完成签到,获得积分10
7秒前
8秒前
10秒前
Qin完成签到,获得积分10
11秒前
科研通AI6应助金www采纳,获得20
11秒前
home完成签到,获得积分10
12秒前
Jiny发布了新的文献求助10
12秒前
平常的如曼完成签到,获得积分10
12秒前
CodeCraft应助个性的振家采纳,获得10
13秒前
14秒前
17秒前
浮游应助左友铭采纳,获得10
18秒前
CodeCraft应助左友铭采纳,获得10
18秒前
19秒前
soul完成签到,获得积分10
20秒前
20秒前
_Forelsket_完成签到,获得积分10
20秒前
我是微风完成签到,获得积分10
21秒前
21秒前
@斤斤计较发布了新的文献求助10
22秒前
22秒前
华仔应助小碗面采纳,获得10
23秒前
浮游应助阳光的小笼包采纳,获得10
26秒前
陈吉止发布了新的文献求助10
27秒前
leng完成签到 ,获得积分10
27秒前
28秒前
爆米花应助小周想学习采纳,获得30
29秒前
科研人完成签到,获得积分10
33秒前
35秒前
35秒前
35秒前
土多多完成签到,获得积分10
35秒前
36秒前
Youngman发布了新的文献求助10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920220
求助须知:如何正确求助?哪些是违规求助? 4191842
关于积分的说明 13019518
捐赠科研通 3962508
什么是DOI,文献DOI怎么找? 2172074
邀请新用户注册赠送积分活动 1190018
关于科研通互助平台的介绍 1098801