A review and meta-analysis of Generative Adversarial Networks and their applications in remote sensing

领域(数学) 计算机科学 生成语法 对抗制 数据科学 水准点(测量) 多样性(控制论) 深度学习 人工智能 遥感 情报检索 地图学 地理 数学 纯数学
作者
Shahab Jozdani,Dongmei Chen,Darren Pouliot,Brian Alan Johnson
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:108: 102734-102734 被引量:28
标识
DOI:10.1016/j.jag.2022.102734
摘要

Generative Adversarial Networks (GANs) are one of the most creative advances in Deep Learning (DL) in recent years. The Remote Sensing (RS) community has adopted GANs quickly, and reported successful use in a wide variety of applications. Given a sharp increase in research on GANs in the field of RS, there is a need for an in-depth review of the major technological/methodological advances and new applications. In this regard, we conducted a comprehensive review and meta-analysis of GAN-related RS papers, with the goals of familiarizing the RS community with the potential of GANs and helping researchers further explore RS applications of GANs by untangling challenges common in this field. Our review is based on 231 journal papers that were retrieved and selected through the Web of Science (WoS) database. We reviewed the theories, applications, and challenges of GANs, and highlighted the gaps to explore in future studies. Through the meta-analysis conducted in this study, we observed that image classification (especially urban mapping) has been the most popular application of GANs, potentially due to the wide availability of benchmark datasets. One the other hand, we found that relatively few studies have explored the potential of GANs for analyzing medium spatial-resolution multi-spectral images (e.g., Landsat or Sentinel-2), even though such images are often freely available and useful for a wide range of applications (e.g., urban expansion analysis, vegetation mapping, etc.). In spite of the applications of GANs for different RS processing tasks, there are still several gaps/questions in this field such as: 1) which GAN models/configurations are more suitable for different applications? 2) to what degree can GANs replace real RS data in different applications? Such gaps/questions can be appropriately addressed by, for example, conducting experimental studies on evaluating different GAN models for various RS applications to provide better insights into how/which GAN models can be best deployed. The meta-analysis results presented in this study could be helpful for RS researchers to know the opportunities of using GANs and understand how GANs contribute to the current challenges in different RS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助10
刚刚
wy.he应助黄嘉慧采纳,获得20
1秒前
123456发布了新的文献求助10
2秒前
Hyde发布了新的文献求助200
2秒前
可靠的访冬完成签到,获得积分10
2秒前
曲奇饼干发布了新的文献求助20
3秒前
3秒前
八月完成签到,获得积分10
4秒前
4秒前
帅贺完成签到,获得积分10
5秒前
q hu t发布了新的文献求助10
6秒前
wyx完成签到 ,获得积分10
6秒前
李小新完成签到 ,获得积分20
6秒前
zzz关闭了zzz文献求助
6秒前
6秒前
执着夏山发布了新的文献求助10
7秒前
7秒前
养猪人完成签到,获得积分10
8秒前
小吃货完成签到,获得积分10
9秒前
酷波er应助一大碗芋泥采纳,获得10
11秒前
SHD发布了新的文献求助10
11秒前
dryao发布了新的文献求助10
11秒前
张思梦发布了新的文献求助1500
11秒前
12秒前
田様应助尊敬的夏槐采纳,获得10
13秒前
打打应助LG采纳,获得10
14秒前
16秒前
17秒前
19秒前
黄金天下完成签到,获得积分10
19秒前
Jasper应助由哎采纳,获得10
19秒前
千里共婵娟应助跳跃鸽子采纳,获得10
20秒前
金皮卡完成签到,获得积分10
21秒前
田様应助mikasa采纳,获得10
22秒前
ei123应助文艺晓亦采纳,获得10
23秒前
一介书生发布了新的文献求助10
23秒前
斯文败类应助大媛媛采纳,获得10
24秒前
七彩完成签到,获得积分10
24秒前
无敌小汐完成签到,获得积分10
25秒前
idemipere完成签到,获得积分10
25秒前
高分求助中
The ACS Guide to Scholarly Communication 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069389
求助须知:如何正确求助?哪些是违规求助? 2723274
关于积分的说明 7481149
捐赠科研通 2370322
什么是DOI,文献DOI怎么找? 1256943
科研通“疑难数据库(出版商)”最低求助积分说明 609763
版权声明 596852