A review and meta-analysis of Generative Adversarial Networks and their applications in remote sensing

领域(数学) 计算机科学 生成语法 对抗制 数据科学 水准点(测量) 多样性(控制论) 深度学习 人工智能 遥感 情报检索 地图学 地理 数学 纯数学
作者
Shahab Jozdani,Dongmei Chen,Darren Pouliot,Brian Alan Johnson
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:108: 102734-102734 被引量:28
标识
DOI:10.1016/j.jag.2022.102734
摘要

Generative Adversarial Networks (GANs) are one of the most creative advances in Deep Learning (DL) in recent years. The Remote Sensing (RS) community has adopted GANs quickly, and reported successful use in a wide variety of applications. Given a sharp increase in research on GANs in the field of RS, there is a need for an in-depth review of the major technological/methodological advances and new applications. In this regard, we conducted a comprehensive review and meta-analysis of GAN-related RS papers, with the goals of familiarizing the RS community with the potential of GANs and helping researchers further explore RS applications of GANs by untangling challenges common in this field. Our review is based on 231 journal papers that were retrieved and selected through the Web of Science (WoS) database. We reviewed the theories, applications, and challenges of GANs, and highlighted the gaps to explore in future studies. Through the meta-analysis conducted in this study, we observed that image classification (especially urban mapping) has been the most popular application of GANs, potentially due to the wide availability of benchmark datasets. One the other hand, we found that relatively few studies have explored the potential of GANs for analyzing medium spatial-resolution multi-spectral images (e.g., Landsat or Sentinel-2), even though such images are often freely available and useful for a wide range of applications (e.g., urban expansion analysis, vegetation mapping, etc.). In spite of the applications of GANs for different RS processing tasks, there are still several gaps/questions in this field such as: 1) which GAN models/configurations are more suitable for different applications? 2) to what degree can GANs replace real RS data in different applications? Such gaps/questions can be appropriately addressed by, for example, conducting experimental studies on evaluating different GAN models for various RS applications to provide better insights into how/which GAN models can be best deployed. The meta-analysis results presented in this study could be helpful for RS researchers to know the opportunities of using GANs and understand how GANs contribute to the current challenges in different RS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Katie完成签到,获得积分10
刚刚
LT发布了新的文献求助10
刚刚
1秒前
科研人完成签到,获得积分10
1秒前
FashionBoy应助彭彭采纳,获得10
1秒前
赤邪发布了新的文献求助10
2秒前
Owen应助lwei采纳,获得10
2秒前
shelly0621给shelly0621的求助进行了留言
2秒前
青木蓝完成签到,获得积分10
2秒前
2秒前
迅速泽洋完成签到,获得积分10
3秒前
dan1029完成签到,获得积分10
3秒前
小王完成签到,获得积分10
3秒前
李繁蕊发布了新的文献求助10
3秒前
4秒前
4秒前
隐形曼青应助hjj采纳,获得10
4秒前
susu完成签到,获得积分10
5秒前
6秒前
caicai发布了新的文献求助10
6秒前
无情的菲鹰完成签到,获得积分10
6秒前
兔兔完成签到 ,获得积分10
6秒前
打打应助勤奋的蜗牛采纳,获得10
6秒前
7秒前
jery完成签到,获得积分10
7秒前
乐乐应助润润轩轩采纳,获得10
8秒前
指哪打哪完成签到,获得积分10
8秒前
弄井发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
9秒前
Wing完成签到 ,获得积分10
10秒前
R先生发布了新的文献求助10
10秒前
科研小白发布了新的文献求助10
10秒前
年三月完成签到 ,获得积分10
11秒前
lb完成签到,获得积分20
11秒前
11秒前
香蕉觅云应助叶飞荷采纳,获得10
12秒前
flow发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762