A review and meta-analysis of Generative Adversarial Networks and their applications in remote sensing

领域(数学) 计算机科学 生成语法 对抗制 数据科学 水准点(测量) 多样性(控制论) 深度学习 人工智能 遥感 情报检索 地图学 地理 数学 纯数学
作者
Shahab Jozdani,Dongmei Chen,Darren Pouliot,Brian Alan Johnson
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:108: 102734-102734 被引量:28
标识
DOI:10.1016/j.jag.2022.102734
摘要

Generative Adversarial Networks (GANs) are one of the most creative advances in Deep Learning (DL) in recent years. The Remote Sensing (RS) community has adopted GANs quickly, and reported successful use in a wide variety of applications. Given a sharp increase in research on GANs in the field of RS, there is a need for an in-depth review of the major technological/methodological advances and new applications. In this regard, we conducted a comprehensive review and meta-analysis of GAN-related RS papers, with the goals of familiarizing the RS community with the potential of GANs and helping researchers further explore RS applications of GANs by untangling challenges common in this field. Our review is based on 231 journal papers that were retrieved and selected through the Web of Science (WoS) database. We reviewed the theories, applications, and challenges of GANs, and highlighted the gaps to explore in future studies. Through the meta-analysis conducted in this study, we observed that image classification (especially urban mapping) has been the most popular application of GANs, potentially due to the wide availability of benchmark datasets. One the other hand, we found that relatively few studies have explored the potential of GANs for analyzing medium spatial-resolution multi-spectral images (e.g., Landsat or Sentinel-2), even though such images are often freely available and useful for a wide range of applications (e.g., urban expansion analysis, vegetation mapping, etc.). In spite of the applications of GANs for different RS processing tasks, there are still several gaps/questions in this field such as: 1) which GAN models/configurations are more suitable for different applications? 2) to what degree can GANs replace real RS data in different applications? Such gaps/questions can be appropriately addressed by, for example, conducting experimental studies on evaluating different GAN models for various RS applications to provide better insights into how/which GAN models can be best deployed. The meta-analysis results presented in this study could be helpful for RS researchers to know the opportunities of using GANs and understand how GANs contribute to the current challenges in different RS applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静水流深完成签到,获得积分10
1秒前
2秒前
orixero应助田攀采纳,获得10
2秒前
2秒前
小费发布了新的文献求助30
2秒前
Cruffin完成签到 ,获得积分10
3秒前
xiw发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
充电宝应助yongp采纳,获得10
4秒前
熬夜波比应助thi采纳,获得10
4秒前
GOqqq发布了新的文献求助100
5秒前
5秒前
lsl599发布了新的文献求助10
5秒前
5秒前
5秒前
傅三毒完成签到 ,获得积分10
6秒前
zzz完成签到,获得积分10
6秒前
6秒前
459954发布了新的文献求助10
6秒前
6秒前
独特烙发布了新的文献求助10
7秒前
酷波er应助,,采纳,获得10
7秒前
dm完成签到,获得积分10
7秒前
Natural完成签到,获得积分10
8秒前
道以文完成签到,获得积分10
8秒前
shisui发布了新的文献求助20
8秒前
9秒前
汉堡包应助静水流深采纳,获得20
9秒前
9秒前
不安含之完成签到,获得积分10
9秒前
Orange应助Pom采纳,获得10
9秒前
probiotics发布了新的文献求助10
9秒前
Catfish完成签到,获得积分10
9秒前
123完成签到 ,获得积分10
9秒前
10秒前
Lucas应助猪猪hero采纳,获得10
10秒前
王王完成签到,获得积分10
11秒前
隐形曼青应助萧然采纳,获得10
11秒前
Jewel_719完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328