亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review and meta-analysis of Generative Adversarial Networks and their applications in remote sensing

领域(数学) 计算机科学 生成语法 对抗制 数据科学 水准点(测量) 多样性(控制论) 深度学习 人工智能 遥感 情报检索 地图学 地理 数学 纯数学
作者
Shahab Jozdani,Dongmei Chen,Darren Pouliot,Brian Alan Johnson
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:108: 102734-102734 被引量:28
标识
DOI:10.1016/j.jag.2022.102734
摘要

Generative Adversarial Networks (GANs) are one of the most creative advances in Deep Learning (DL) in recent years. The Remote Sensing (RS) community has adopted GANs quickly, and reported successful use in a wide variety of applications. Given a sharp increase in research on GANs in the field of RS, there is a need for an in-depth review of the major technological/methodological advances and new applications. In this regard, we conducted a comprehensive review and meta-analysis of GAN-related RS papers, with the goals of familiarizing the RS community with the potential of GANs and helping researchers further explore RS applications of GANs by untangling challenges common in this field. Our review is based on 231 journal papers that were retrieved and selected through the Web of Science (WoS) database. We reviewed the theories, applications, and challenges of GANs, and highlighted the gaps to explore in future studies. Through the meta-analysis conducted in this study, we observed that image classification (especially urban mapping) has been the most popular application of GANs, potentially due to the wide availability of benchmark datasets. One the other hand, we found that relatively few studies have explored the potential of GANs for analyzing medium spatial-resolution multi-spectral images (e.g., Landsat or Sentinel-2), even though such images are often freely available and useful for a wide range of applications (e.g., urban expansion analysis, vegetation mapping, etc.). In spite of the applications of GANs for different RS processing tasks, there are still several gaps/questions in this field such as: 1) which GAN models/configurations are more suitable for different applications? 2) to what degree can GANs replace real RS data in different applications? Such gaps/questions can be appropriately addressed by, for example, conducting experimental studies on evaluating different GAN models for various RS applications to provide better insights into how/which GAN models can be best deployed. The meta-analysis results presented in this study could be helpful for RS researchers to know the opportunities of using GANs and understand how GANs contribute to the current challenges in different RS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈应助AliEmbark采纳,获得10
41秒前
猪仔5号发布了新的文献求助10
46秒前
AliEmbark完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
sjyu1985完成签到 ,获得积分10
2分钟前
hua完成签到,获得积分10
2分钟前
hua发布了新的文献求助10
3分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
猪仔5号发布了新的文献求助10
5分钟前
乐正怡完成签到 ,获得积分0
5分钟前
酷波er应助忐忑的黄豆采纳,获得10
5分钟前
小石头完成签到 ,获得积分10
5分钟前
Yuki完成签到 ,获得积分10
6分钟前
吴静完成签到 ,获得积分10
6分钟前
Percy完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
猪仔5号发布了新的文献求助10
7分钟前
7分钟前
俊逸的若魔完成签到 ,获得积分10
7分钟前
U87完成签到,获得积分10
7分钟前
9分钟前
小蘑菇应助郡邑采纳,获得10
9分钟前
zsmj23完成签到 ,获得积分0
10分钟前
科研通AI2S应助谨慎建辉采纳,获得10
10分钟前
这学真难读下去完成签到,获得积分10
10分钟前
yanzilin完成签到 ,获得积分10
10分钟前
猪仔5号发布了新的文献求助10
11分钟前
谨慎建辉完成签到,获得积分10
11分钟前
猪仔5号发布了新的文献求助10
11分钟前
科研通AI2S应助谨慎建辉采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302944
求助须知:如何正确求助?哪些是违规求助? 4449985
关于积分的说明 13848855
捐赠科研通 4336308
什么是DOI,文献DOI怎么找? 2380906
邀请新用户注册赠送积分活动 1375846
关于科研通互助平台的介绍 1342239