清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A review and meta-analysis of Generative Adversarial Networks and their applications in remote sensing

领域(数学) 计算机科学 生成语法 对抗制 数据科学 水准点(测量) 多样性(控制论) 深度学习 人工智能 遥感 情报检索 地图学 地理 数学 纯数学
作者
Shahab Jozdani,Dongmei Chen,Darren Pouliot,Brian Alan Johnson
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:108: 102734-102734 被引量:28
标识
DOI:10.1016/j.jag.2022.102734
摘要

Generative Adversarial Networks (GANs) are one of the most creative advances in Deep Learning (DL) in recent years. The Remote Sensing (RS) community has adopted GANs quickly, and reported successful use in a wide variety of applications. Given a sharp increase in research on GANs in the field of RS, there is a need for an in-depth review of the major technological/methodological advances and new applications. In this regard, we conducted a comprehensive review and meta-analysis of GAN-related RS papers, with the goals of familiarizing the RS community with the potential of GANs and helping researchers further explore RS applications of GANs by untangling challenges common in this field. Our review is based on 231 journal papers that were retrieved and selected through the Web of Science (WoS) database. We reviewed the theories, applications, and challenges of GANs, and highlighted the gaps to explore in future studies. Through the meta-analysis conducted in this study, we observed that image classification (especially urban mapping) has been the most popular application of GANs, potentially due to the wide availability of benchmark datasets. One the other hand, we found that relatively few studies have explored the potential of GANs for analyzing medium spatial-resolution multi-spectral images (e.g., Landsat or Sentinel-2), even though such images are often freely available and useful for a wide range of applications (e.g., urban expansion analysis, vegetation mapping, etc.). In spite of the applications of GANs for different RS processing tasks, there are still several gaps/questions in this field such as: 1) which GAN models/configurations are more suitable for different applications? 2) to what degree can GANs replace real RS data in different applications? Such gaps/questions can be appropriately addressed by, for example, conducting experimental studies on evaluating different GAN models for various RS applications to provide better insights into how/which GAN models can be best deployed. The meta-analysis results presented in this study could be helpful for RS researchers to know the opportunities of using GANs and understand how GANs contribute to the current challenges in different RS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xue完成签到 ,获得积分10
10秒前
冰凌心恋完成签到,获得积分10
31秒前
54秒前
张wx_100完成签到,获得积分10
1分钟前
QYQ完成签到 ,获得积分10
1分钟前
山山完成签到 ,获得积分10
1分钟前
1分钟前
Chen完成签到 ,获得积分10
2分钟前
CH完成签到,获得积分10
2分钟前
wendy完成签到,获得积分10
2分钟前
科研通AI5应助梁晨采纳,获得10
2分钟前
发个15分的完成签到 ,获得积分10
3分钟前
4分钟前
培培完成签到 ,获得积分10
4分钟前
可靠若云完成签到,获得积分10
4分钟前
萌兴完成签到 ,获得积分10
4分钟前
elisa828完成签到,获得积分10
4分钟前
5分钟前
stephanie_han完成签到,获得积分10
5分钟前
向阳而生完成签到,获得积分10
6分钟前
楼少博发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
一盏壶完成签到,获得积分10
7分钟前
老实的乐儿完成签到 ,获得积分10
7分钟前
7分钟前
月儿完成签到 ,获得积分10
7分钟前
好运常在完成签到 ,获得积分10
7分钟前
逍遥游完成签到,获得积分10
10分钟前
11分钟前
John发布了新的文献求助10
11分钟前
tszjw168完成签到 ,获得积分10
12分钟前
量子星尘发布了新的文献求助10
12分钟前
云深不知处完成签到,获得积分10
12分钟前
Qing完成签到 ,获得积分10
13分钟前
ghost发布了新的文献求助20
13分钟前
13分钟前
yusovegoistt发布了新的文献求助10
13分钟前
Alisha完成签到,获得积分10
13分钟前
LINDENG2004完成签到 ,获得积分10
14分钟前
薛家泰完成签到 ,获得积分10
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957970
求助须知:如何正确求助?哪些是违规求助? 4219196
关于积分的说明 13133286
捐赠科研通 4002249
什么是DOI,文献DOI怎么找? 2190284
邀请新用户注册赠送积分活动 1205015
关于科研通互助平台的介绍 1116638