Review of Brain Tumor MRI Image Segmentation Methods for BraTS Challenge Dataset

深度学习 人工智能 计算机科学 分割 机器学习 图像分割 医学影像学 脑瘤 生存能力 医学 计算机网络 病理
作者
Arindam Ghosh,Sanjeev Thakur
标识
DOI:10.1109/confluence52989.2022.9734134
摘要

Brain Tumor MRI segmentation is a crucial task in biomedical imaging. Early discovery of brain cancer can help with improving the quality of life and survivability posttreatment. In the case of children affected with brain tumors, early detection can determine what therapy would be required and early treatment in most cases will increase the longevity of their life. Brain Tumor segmentation has been done manually by an expert operator who is clinically trained. But this is very time-consuming and also the rating by these trained operators has intra-operator variability in most cases. Also, the different machines from different places have few variations in imaging which brings the rating variations. A need for Fully automated segmentation models is required for overcoming these issues. In recent years we have seen a trend of deep learning models being in heavy use in medical imaging tasks. These deep learning models have exhibited state-of-the-art performance by self-learning features. In this paper we focus on different machine learning, deep learning models being used on the Brain Tumor Segmentation (BraTS) challenge datasets. This paper tries to give the overall work-flow required for Brain Tumor MRI segmentation and gives a comparison on different models centered around deep learning as well as machine learning models. Lastly, an evaluation of the present state is shown and future improvements to standardize MRI-based brain tumor segmentation techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Muirle完成签到,获得积分10
刚刚
fang发布了新的文献求助10
2秒前
深情安青应助椰子泡芙采纳,获得10
4秒前
6秒前
炜大的我应助qiuxuan100采纳,获得10
7秒前
科研打工人完成签到,获得积分10
7秒前
8秒前
9秒前
端庄千琴完成签到,获得积分10
9秒前
10秒前
多多指教完成签到,获得积分10
11秒前
Muller完成签到,获得积分10
11秒前
汉堡包应助wengi94采纳,获得10
11秒前
树袋熊发布了新的文献求助10
13秒前
英俊的铭应助田振宇采纳,获得10
15秒前
害怕的灰狼关注了科研通微信公众号
17秒前
方琼燕完成签到 ,获得积分10
17秒前
17秒前
传奇3应助fang采纳,获得10
18秒前
18秒前
zxj发布了新的文献求助20
18秒前
18秒前
19秒前
Y_Jfeng完成签到,获得积分10
19秒前
wengi94完成签到,获得积分10
20秒前
20秒前
Prudence完成签到,获得积分10
20秒前
AnyYuan完成签到,获得积分10
21秒前
dd发布了新的文献求助10
22秒前
22秒前
22秒前
长情砖头发布了新的文献求助10
22秒前
诺诺完成签到,获得积分10
22秒前
冷傲星月完成签到,获得积分10
22秒前
23秒前
王爱芳发布了新的文献求助10
23秒前
23秒前
qiongqiong发布了新的文献求助10
23秒前
拉长的博超完成签到,获得积分10
23秒前
24秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382813
求助须知:如何正确求助?哪些是违规求助? 2997266
关于积分的说明 8773363
捐赠科研通 2682672
什么是DOI,文献DOI怎么找? 1469272
科研通“疑难数据库(出版商)”最低求助积分说明 679344
邀请新用户注册赠送积分活动 671487