Enhancing Characteristic Gene Selection and Tumor Classification by the Robust Laplacian Supervised Discriminative Sparse PCA

判别式 降维 人工智能 模式识别(心理学) 计算机科学 拉普拉斯矩阵 离群值 稳健性(进化) 主成分分析 特征选择 稀疏PCA 机器学习 图形 数据挖掘 基因 生物 生物化学 理论计算机科学
作者
Lu-Xing Zhang,He Yan,Yan Liu,Jian Xu,Jiangning Song,Dong‐Jun Yu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (7): 1794-1807 被引量:3
标识
DOI:10.1021/acs.jcim.1c01403
摘要

Characteristic gene selection and tumor classification of gene expression data play major roles in genomic research. Due to the characteristics of a small sample size and high dimensionality of gene expression data, it is a common practice to perform dimensionality reduction prior to the use of machine learning-based methods to analyze the expression data. In this context, classical principal component analysis (PCA) and its improved versions have been widely used. Recently, methods based on supervised discriminative sparse PCA have been developed to improve the performance of data dimensionality reduction. However, such methods still have limitations: most of them have not taken into consideration the improvement of robustness to outliers and noise, label information, sparsity, as well as capturing intrinsic geometrical structures in one objective function. To address this drawback, in this study, we propose a novel PCA-based method, known as the robust Laplacian supervised discriminative sparse PCA, termed RLSDSPCA, which enforces the L2,1 norm on the error function and incorporates the graph Laplacian into supervised discriminative sparse PCA. To evaluate the efficacy of the proposed RLSDSPCA, we applied it to the problems of characteristic gene selection and tumor classification problems using gene expression data. The results demonstrate that the proposed RLSDSPCA method, when used in combination with other related methods, can effectively identify new pathogenic genes associated with diseases. In addition, RLSDSPCA has also achieved the best performance compared with the state-of-the-art methods on tumor classification in terms of major performance metrics. The codes and data sets used in the study are freely available at http://csbio.njust.edu.cn/bioinf/rlsdspca/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形的皮卡丘完成签到 ,获得积分10
1秒前
嘻嘻嘻嘻发布了新的文献求助30
1秒前
田様应助安徒采纳,获得10
1秒前
LEO完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
丘比特应助饼藏采纳,获得40
5秒前
Kayla完成签到,获得积分10
5秒前
xzd1014发布了新的文献求助10
5秒前
长孙归尘完成签到 ,获得积分10
5秒前
柳白发布了新的文献求助10
7秒前
noite完成签到,获得积分20
7秒前
adazbq发布了新的文献求助10
8秒前
二橦发布了新的文献求助10
8秒前
xzd1014完成签到,获得积分10
10秒前
11秒前
hao完成签到 ,获得积分10
11秒前
汉堡包应助da_line采纳,获得10
11秒前
13秒前
九天完成签到,获得积分10
13秒前
ikki完成签到,获得积分10
13秒前
ZZ应助xzd1014采纳,获得10
13秒前
kokoko完成签到,获得积分10
16秒前
慕青应助使用过有几个采纳,获得20
16秒前
SYLH应助flasher22采纳,获得10
16秒前
高贵紫丝发布了新的文献求助10
17秒前
cancan发布了新的文献求助10
17秒前
sh131完成签到,获得积分10
18秒前
小白白发布了新的文献求助10
18秒前
xxj完成签到 ,获得积分10
18秒前
lii应助666采纳,获得10
19秒前
科目三应助林亦彤采纳,获得10
20秒前
知北完成签到,获得积分10
20秒前
zhanghao完成签到 ,获得积分10
25秒前
25秒前
小巧羊青完成签到,获得积分10
25秒前
orixero应助zyzraylene采纳,获得10
27秒前
小韩要考博完成签到 ,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528