亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Characteristic Gene Selection and Tumor Classification by the Robust Laplacian Supervised Discriminative Sparse PCA

判别式 降维 人工智能 模式识别(心理学) 计算机科学 拉普拉斯矩阵 离群值 稳健性(进化) 主成分分析 特征选择 稀疏PCA 机器学习 图形 数据挖掘 基因 生物 生物化学 理论计算机科学
作者
Lu-Xing Zhang,He Yan,Yan Liu,Jian Xu,Jiangning Song,Dong‐Jun Yu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (7): 1794-1807 被引量:3
标识
DOI:10.1021/acs.jcim.1c01403
摘要

Characteristic gene selection and tumor classification of gene expression data play major roles in genomic research. Due to the characteristics of a small sample size and high dimensionality of gene expression data, it is a common practice to perform dimensionality reduction prior to the use of machine learning-based methods to analyze the expression data. In this context, classical principal component analysis (PCA) and its improved versions have been widely used. Recently, methods based on supervised discriminative sparse PCA have been developed to improve the performance of data dimensionality reduction. However, such methods still have limitations: most of them have not taken into consideration the improvement of robustness to outliers and noise, label information, sparsity, as well as capturing intrinsic geometrical structures in one objective function. To address this drawback, in this study, we propose a novel PCA-based method, known as the robust Laplacian supervised discriminative sparse PCA, termed RLSDSPCA, which enforces the L2,1 norm on the error function and incorporates the graph Laplacian into supervised discriminative sparse PCA. To evaluate the efficacy of the proposed RLSDSPCA, we applied it to the problems of characteristic gene selection and tumor classification problems using gene expression data. The results demonstrate that the proposed RLSDSPCA method, when used in combination with other related methods, can effectively identify new pathogenic genes associated with diseases. In addition, RLSDSPCA has also achieved the best performance compared with the state-of-the-art methods on tumor classification in terms of major performance metrics. The codes and data sets used in the study are freely available at http://csbio.njust.edu.cn/bioinf/rlsdspca/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JinYang完成签到,获得积分10
3秒前
充电宝应助twk采纳,获得10
7秒前
TXZ06完成签到,获得积分10
15秒前
15秒前
Suzy发布了新的文献求助150
17秒前
丘比特应助wpj采纳,获得10
18秒前
c123完成签到 ,获得积分10
18秒前
wanci应助壳壳采纳,获得10
48秒前
隐形曼青应助ACX采纳,获得10
50秒前
零四零零柒贰完成签到 ,获得积分10
50秒前
56秒前
59秒前
ACX发布了新的文献求助10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
文静的摩托完成签到,获得积分10
1分钟前
1分钟前
壳壳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
李Aa发布了新的文献求助10
2分钟前
壳壳完成签到,获得积分10
2分钟前
2分钟前
搜集达人应助andrele采纳,获得10
2分钟前
完美世界应助andrele采纳,获得10
2分钟前
3分钟前
FashionBoy应助andrele采纳,获得10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
3分钟前
赘婿应助直率的玉米采纳,获得10
3分钟前
wanwan发布了新的文献求助10
3分钟前
3分钟前
深情安青应助andrele采纳,获得10
3分钟前
3分钟前
3分钟前
方之双发布了新的文献求助10
4分钟前
皮卡完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015679
关于积分的说明 8871627
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482240
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951