亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Characteristic Gene Selection and Tumor Classification by the Robust Laplacian Supervised Discriminative Sparse PCA

判别式 降维 人工智能 模式识别(心理学) 计算机科学 拉普拉斯矩阵 离群值 稳健性(进化) 主成分分析 特征选择 稀疏PCA 机器学习 图形 数据挖掘 基因 生物 生物化学 理论计算机科学
作者
Lu-Xing Zhang,He Yan,Yan Liu,Jian Xu,Jiangning Song,Dong‐Jun Yu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (7): 1794-1807 被引量:3
标识
DOI:10.1021/acs.jcim.1c01403
摘要

Characteristic gene selection and tumor classification of gene expression data play major roles in genomic research. Due to the characteristics of a small sample size and high dimensionality of gene expression data, it is a common practice to perform dimensionality reduction prior to the use of machine learning-based methods to analyze the expression data. In this context, classical principal component analysis (PCA) and its improved versions have been widely used. Recently, methods based on supervised discriminative sparse PCA have been developed to improve the performance of data dimensionality reduction. However, such methods still have limitations: most of them have not taken into consideration the improvement of robustness to outliers and noise, label information, sparsity, as well as capturing intrinsic geometrical structures in one objective function. To address this drawback, in this study, we propose a novel PCA-based method, known as the robust Laplacian supervised discriminative sparse PCA, termed RLSDSPCA, which enforces the L2,1 norm on the error function and incorporates the graph Laplacian into supervised discriminative sparse PCA. To evaluate the efficacy of the proposed RLSDSPCA, we applied it to the problems of characteristic gene selection and tumor classification problems using gene expression data. The results demonstrate that the proposed RLSDSPCA method, when used in combination with other related methods, can effectively identify new pathogenic genes associated with diseases. In addition, RLSDSPCA has also achieved the best performance compared with the state-of-the-art methods on tumor classification in terms of major performance metrics. The codes and data sets used in the study are freely available at http://csbio.njust.edu.cn/bioinf/rlsdspca/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助谭代涛采纳,获得10
10秒前
27秒前
48秒前
harrywoo发布了新的文献求助30
54秒前
彭于晏应助真实的映寒采纳,获得10
54秒前
loitinsuen完成签到,获得积分10
56秒前
1分钟前
Jasper应助明芬采纳,获得10
1分钟前
酷波er应助harrywoo采纳,获得10
1分钟前
1分钟前
1分钟前
明芬发布了新的文献求助10
1分钟前
谭代涛发布了新的文献求助10
2分钟前
草木完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
明芬发布了新的文献求助10
2分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
精明犀牛完成签到,获得积分10
3分钟前
3分钟前
vvsloy发布了新的文献求助10
3分钟前
lutos发布了新的文献求助10
3分钟前
精明犀牛发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Imran完成签到,获得积分10
3分钟前
4分钟前
CodeCraft应助真实的映寒采纳,获得10
4分钟前
在水一方应助谭代涛采纳,获得10
4分钟前
4分钟前
谭代涛发布了新的文献求助10
4分钟前
犬来八荒发布了新的文献求助30
4分钟前
小山己几完成签到,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
求求您啦完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599825
求助须知:如何正确求助?哪些是违规求助? 4685564
关于积分的说明 14838662
捐赠科研通 4671771
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946