An enhanced hybrid arithmetic optimization algorithm for engineering applications

算法 数学优化 计算机科学 优化算法 算术 数学
作者
Gang Hu,Jingyu Zhong,Bo Du,Guo Wei
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:394: 114901-114901 被引量:117
标识
DOI:10.1016/j.cma.2022.114901
摘要

Arithmetic optimization algorithm (AOA) is a newly well-developed meta-heuristic algorithm that is inspired by the distribution behavior of main arithmetic operators in mathematics. Although the original AOA has shown well competitive performance with popular meta-heuristic algorithms, it still faces the issues of insufficient exploitation ability, ease of falling into local optima and low convergence accuracy in large-scale applications. In order to ameliorate these deficiencies, an enhanced hybrid AOA named CSOAOA, integrated with point set strategy, optimal neighborhood learning strategy and crisscross strategy, is developed in this paper. First, a good point set initialization strategy is added to obtain a higher-quality initial population, which improves the convergence speed of the algorithm. Then, the optimal neighborhood learning strategy is adopted to guide the individual’s search behavior and avoid the algorithm falling into the current local optimum, which boosts the search efficiency and calculation accuracy. Finally, by combining AOA with the crisscross optimization algorithm, the exploration and utilization ability of the crisscross algorithm are integrated into the CSOAOA. These strategies collaborate to enhance AOA in accelerating overall performance. The superiority of the proposed CSOAOA is comprehensively verified by comparing with the original AOA, six improved AOA and numerous celebrated and newly developed algorithms on the well-known 23 classical benchmark functions, IEEE Congress on Evolutionary Computation (CEC) 2019 test suite and IEEE CEC 2020 benchmark functions, respectively. Meanwhile, the practicability of CSOAOA is also highlighted by solving eight real-world engineering design problems. Furthermore, the statistical testing of CSOAOA has been conducted to validate its significance. Experimental results and statistical comparisons manifest the superior performance of CSOAOA over the comparison algorithms in terms of precision, convergence rate and solution quality. Therefore, CSOAOA is potentially a powerful and competitive meta-heuristic algorithm for solving complex engineering optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助椰子采纳,获得10
1秒前
sunshine发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
Singularity应助wxy采纳,获得10
5秒前
领导范儿应助周凡淇采纳,获得10
6秒前
秘小先儿应助周凡淇采纳,获得10
6秒前
Liufgui应助周凡淇采纳,获得10
6秒前
科研通AI2S应助周凡淇采纳,获得10
6秒前
酷炫的毛巾应助周凡淇采纳,获得10
6秒前
Singularity应助周凡淇采纳,获得10
6秒前
oh应助周凡淇采纳,获得10
6秒前
NexusExplorer应助周凡淇采纳,获得10
6秒前
寂寞的雨柏完成签到 ,获得积分20
6秒前
科研怪发布了新的文献求助10
6秒前
Owen应助西子阳采纳,获得10
7秒前
8秒前
poplyx发布了新的文献求助10
9秒前
10秒前
璐璐完成签到 ,获得积分10
10秒前
科研乞丐应助cccccl采纳,获得20
11秒前
wangyang完成签到 ,获得积分10
11秒前
13秒前
13秒前
曾小莹完成签到,获得积分10
13秒前
14秒前
14秒前
17秒前
cc完成签到,获得积分10
17秒前
dian发布了新的文献求助10
17秒前
杜本内完成签到,获得积分10
18秒前
19秒前
温暖宛筠发布了新的文献求助10
19秒前
1111发布了新的文献求助10
21秒前
打打应助十点差一分采纳,获得10
21秒前
22秒前
cherry完成签到,获得积分20
22秒前
bkagyin应助整齐的雨采纳,获得10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999495
求助须知:如何正确求助?哪些是违规求助? 3538942
关于积分的说明 11275419
捐赠科研通 3277782
什么是DOI,文献DOI怎么找? 1807668
邀请新用户注册赠送积分活动 884011
科研通“疑难数据库(出版商)”最低求助积分说明 810111