An enhanced hybrid arithmetic optimization algorithm for engineering applications

算法 数学优化 计算机科学 优化算法 算术 数学
作者
Gang Hu,Jingyu Zhong,Bo Du,Guo Wei
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:394: 114901-114901 被引量:125
标识
DOI:10.1016/j.cma.2022.114901
摘要

Arithmetic optimization algorithm (AOA) is a newly well-developed meta-heuristic algorithm that is inspired by the distribution behavior of main arithmetic operators in mathematics. Although the original AOA has shown well competitive performance with popular meta-heuristic algorithms, it still faces the issues of insufficient exploitation ability, ease of falling into local optima and low convergence accuracy in large-scale applications. In order to ameliorate these deficiencies, an enhanced hybrid AOA named CSOAOA, integrated with point set strategy, optimal neighborhood learning strategy and crisscross strategy, is developed in this paper. First, a good point set initialization strategy is added to obtain a higher-quality initial population, which improves the convergence speed of the algorithm. Then, the optimal neighborhood learning strategy is adopted to guide the individual’s search behavior and avoid the algorithm falling into the current local optimum, which boosts the search efficiency and calculation accuracy. Finally, by combining AOA with the crisscross optimization algorithm, the exploration and utilization ability of the crisscross algorithm are integrated into the CSOAOA. These strategies collaborate to enhance AOA in accelerating overall performance. The superiority of the proposed CSOAOA is comprehensively verified by comparing with the original AOA, six improved AOA and numerous celebrated and newly developed algorithms on the well-known 23 classical benchmark functions, IEEE Congress on Evolutionary Computation (CEC) 2019 test suite and IEEE CEC 2020 benchmark functions, respectively. Meanwhile, the practicability of CSOAOA is also highlighted by solving eight real-world engineering design problems. Furthermore, the statistical testing of CSOAOA has been conducted to validate its significance. Experimental results and statistical comparisons manifest the superior performance of CSOAOA over the comparison algorithms in terms of precision, convergence rate and solution quality. Therefore, CSOAOA is potentially a powerful and competitive meta-heuristic algorithm for solving complex engineering optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助陈吕婷采纳,获得30
2秒前
Aliya完成签到 ,获得积分10
4秒前
SciGPT应助壮观的大船采纳,获得10
4秒前
单薄归尘完成签到 ,获得积分10
5秒前
Sherry完成签到,获得积分10
6秒前
星辰大海应助Dear77采纳,获得10
6秒前
7秒前
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
tuanheqi应助科研通管家采纳,获得150
7秒前
852应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
dreamlightzy应助科研通管家采纳,获得10
7秒前
热心子轩应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
dpshi应助科研通管家采纳,获得10
8秒前
科研通AI6应助本质长青采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Jasper应助木佑采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
宣邹应助科研通管家采纳,获得20
8秒前
李健应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
Ganfei完成签到,获得积分20
8秒前
无花果应助科研通管家采纳,获得10
8秒前
8秒前
丰富山灵完成签到 ,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
dreamlightzy应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920881
求助须知:如何正确求助?哪些是违规求助? 4192265
关于积分的说明 13020962
捐赠科研通 3963415
什么是DOI,文献DOI怎么找? 2172449
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099258