Unsupervised Meta Learning With Multiview Constraints for Hyperspectral Image Small Sample set Classification

人工智能 计算机科学 模式识别(心理学) 高光谱成像 样品(材料) 无监督学习 机器学习 集合(抽象数据类型) 上下文图像分类 深度学习 监督学习 残余物 图像(数学) 人工神经网络 算法 化学 色谱法 程序设计语言
作者
Kuiliang Gao,Bing Liu,Xuchu Yu,Anzhu Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3449-3462 被引量:41
标识
DOI:10.1109/tip.2022.3169689
摘要

The difficulties of obtaining sufficient labeled samples have always been one of the factors hindering deep learning models from obtaining high accuracy in hyperspectral image (HSI) classification. To reduce the dependence of deep learning models on training samples, meta learning methods have been introduced, effectively improving the classification accuracy in small sample set scenarios. However, the existing methods based on meta learning still need to construct a labeled source data set with several pre-collected HSIs, and must utilize a large number of labeled samples for meta-training, which is actually time-consuming and labor-intensive. To solve this problem, this paper proposes a novel unsupervised meta learning method with multiview constraints for HSI small sample set classification. Specifically, the proposed method first builds an unlabeled source data set using unlabeled HSIs. Then, multiple spatial-spectral multiview features of each unlabeled sample are generated to construct tasks for unsupervised meta learning. Finally, the designed residual relation network is used for meta-training and small sample set classification based on the voting strategy. Compared with existing supervised meta learning methods for HSI classification, our method can only utilize HSIs without any label for unsupervised meta learning, which significantly reduces the number of requisite labeled samples in the whole classification process. To verify the effectiveness of the proposed method, extensive experiments are carried out on 8 public HSIs in the cross-domain and in-domain classification scenarios. The statistical results demonstrate that, compared with existing supervised meta learning methods and other advanced classification models, the proposed method can achieve competitive or better classification performance in small sample set scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nenoaowu应助天真凡灵采纳,获得10
1秒前
杨春末发布了新的文献求助10
2秒前
阿kkk完成签到,获得积分10
2秒前
李小汁发布了新的文献求助10
2秒前
笨笨青筠发布了新的文献求助10
2秒前
义气的似狮完成签到,获得积分10
3秒前
7秒前
Rvan完成签到,获得积分10
7秒前
Boris完成签到 ,获得积分10
7秒前
8秒前
情怀应助Ann采纳,获得10
9秒前
斯文败类应助Linyi采纳,获得10
9秒前
lu完成签到,获得积分10
10秒前
gyhmybsy完成签到,获得积分10
10秒前
yiyi131发布了新的文献求助20
14秒前
17秒前
Guke完成签到,获得积分10
18秒前
Bethune完成签到 ,获得积分10
20秒前
你想不想变成一粒芝麻完成签到,获得积分10
20秒前
和谐为上发布了新的文献求助10
20秒前
22秒前
24秒前
研友_n2r2Kn完成签到,获得积分10
26秒前
26秒前
俞渝发布了新的文献求助30
27秒前
可爱的函函应助gdh采纳,获得10
28秒前
Ann发布了新的文献求助10
29秒前
30秒前
Minerva发布了新的文献求助10
30秒前
闪闪完成签到 ,获得积分10
31秒前
俞渝完成签到,获得积分20
37秒前
40秒前
40秒前
陈晨完成签到,获得积分10
42秒前
43秒前
小马甲应助wxyllxx采纳,获得10
43秒前
45秒前
麻薯头头发布了新的文献求助10
45秒前
46秒前
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023