Unsupervised Meta Learning With Multiview Constraints for Hyperspectral Image Small Sample set Classification

人工智能 计算机科学 模式识别(心理学) 高光谱成像 样品(材料) 无监督学习 机器学习 集合(抽象数据类型) 上下文图像分类 深度学习 监督学习 残余物 图像(数学) 人工神经网络 算法 化学 色谱法 程序设计语言
作者
Kuiliang Gao,Bing Liu,Xuchu Yu,Anzhu Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3449-3462 被引量:41
标识
DOI:10.1109/tip.2022.3169689
摘要

The difficulties of obtaining sufficient labeled samples have always been one of the factors hindering deep learning models from obtaining high accuracy in hyperspectral image (HSI) classification. To reduce the dependence of deep learning models on training samples, meta learning methods have been introduced, effectively improving the classification accuracy in small sample set scenarios. However, the existing methods based on meta learning still need to construct a labeled source data set with several pre-collected HSIs, and must utilize a large number of labeled samples for meta-training, which is actually time-consuming and labor-intensive. To solve this problem, this paper proposes a novel unsupervised meta learning method with multiview constraints for HSI small sample set classification. Specifically, the proposed method first builds an unlabeled source data set using unlabeled HSIs. Then, multiple spatial-spectral multiview features of each unlabeled sample are generated to construct tasks for unsupervised meta learning. Finally, the designed residual relation network is used for meta-training and small sample set classification based on the voting strategy. Compared with existing supervised meta learning methods for HSI classification, our method can only utilize HSIs without any label for unsupervised meta learning, which significantly reduces the number of requisite labeled samples in the whole classification process. To verify the effectiveness of the proposed method, extensive experiments are carried out on 8 public HSIs in the cross-domain and in-domain classification scenarios. The statistical results demonstrate that, compared with existing supervised meta learning methods and other advanced classification models, the proposed method can achieve competitive or better classification performance in small sample set scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LONG发布了新的文献求助10
1秒前
传奇3应助BZPL采纳,获得10
2秒前
2秒前
搜集达人应助ttnnn采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
爆米花应助book思议采纳,获得30
6秒前
6秒前
Randall发布了新的文献求助10
7秒前
鹿诗筠完成签到,获得积分10
7秒前
9秒前
10秒前
无花果应助LONG采纳,获得10
10秒前
ZHAO完成签到,获得积分10
11秒前
和谐的孱完成签到,获得积分10
11秒前
小付发布了新的文献求助10
11秒前
简单雨柏发布了新的文献求助10
12秒前
一一发布了新的文献求助10
13秒前
Lucas应助笑点低的丹烟采纳,获得10
14秒前
焱焱发布了新的文献求助10
14秒前
上官若男应助vicar采纳,获得10
15秒前
djiwisksk66应助xiong_mandy采纳,获得10
16秒前
chancco发布了新的文献求助10
16秒前
16秒前
xingxing发布了新的文献求助10
17秒前
yyds应助鸭鸭酱采纳,获得100
18秒前
18秒前
研友_VZG7GZ应助儒雅的巧曼采纳,获得10
19秒前
zhangjian19237完成签到,获得积分10
19秒前
情怀应助执着的冰蓝采纳,获得10
20秒前
20秒前
小小发布了新的文献求助10
20秒前
21秒前
22秒前
费老五完成签到 ,获得积分10
22秒前
龍Ryu发布了新的文献求助10
23秒前
Jiayi完成签到 ,获得积分10
23秒前
23秒前
小王发布了新的文献求助10
24秒前
25秒前
冲冲冲完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281