亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-Part Learning for Fine-Grained Image Classification

判别式 人工智能 计算机科学 卷积神经网络 机器学习 特征学习 水准点(测量) 模式识别(心理学) 特征提取 特征(语言学) 背景(考古学) 上下文图像分类 图像(数学) 古生物学 语言学 哲学 大地测量学 生物 地理
作者
Man Liu,Chunjie Zhang,Huihui Bai,Riquan Zhang,Yao Zhao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 748-758 被引量:20
标识
DOI:10.1109/tip.2021.3135477
摘要

Recent techniques have achieved remarkable improvements depended on mining subtle yet distinctive features for fine-grained visual classification (FGVC). While prior works directly combine discriminative features extracted from different parts, we argue that the potential interactions between different parts and their abilities to category predictions should be taken into consideration, which enables significant parts to contribute more to the decision of the sub-category. To this end, we present a Cross-Part Convolutional Neural Network (CP-CNN) in a weakly supervised manner to explore cross-learning among multi-regional features. Specifically, the context transformer is implemented to encourage joint feature learning across different parts under the guidance of a navigator. The part with the highest confidence is regarded as a navigator to deliver distinguishing characteristics to the others with lower confidence while the complementary information is retained. To locate discriminative but subtle parts precisely, a part proposal generator (PPG) is designed with the feature enhancement blocks, through which complex scale variations caused by the viewpoint diversity can be effectively alleviated. Extensive experiments on three benchmark datasets demonstrate that our proposed method consistently outperforms existing state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
大晨发布了新的文献求助10
13秒前
17秒前
所所应助贝贝Rach采纳,获得10
21秒前
甜甜纸飞机完成签到 ,获得积分10
25秒前
甜甜的紫菜完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
53秒前
wanci应助科研通管家采纳,获得10
1分钟前
LeoBigman完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小雨发布了新的文献求助10
1分钟前
djnjv完成签到 ,获得积分10
1分钟前
Akim应助饱满绫采纳,获得10
2分钟前
2分钟前
饱满绫发布了新的文献求助10
2分钟前
balko发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Frank发布了新的文献求助10
3分钟前
快乐谷蓝完成签到,获得积分10
3分钟前
饱满绫完成签到,获得积分20
3分钟前
南寅完成签到,获得积分10
4分钟前
土豆你个西红柿完成签到 ,获得积分10
4分钟前
陶醉的蜜蜂完成签到,获得积分10
4分钟前
jayliu完成签到,获得积分10
4分钟前
4分钟前
桥洞居士发布了新的文献求助10
4分钟前
天天快乐应助科研通管家采纳,获得10
5分钟前
Frank发布了新的文献求助10
5分钟前
苏梗完成签到 ,获得积分10
5分钟前
专一的忆寒完成签到,获得积分10
5分钟前
浮游应助含蓄草丛采纳,获得10
5分钟前
5分钟前
桥洞居士完成签到,获得积分10
5分钟前
5分钟前
6分钟前
曦耀发布了新的文献求助10
6分钟前
韩小土豆完成签到 ,获得积分10
6分钟前
伯劳完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634956
求助须知:如何正确求助?哪些是违规求助? 4734376
关于积分的说明 14989532
捐赠科研通 4792698
什么是DOI,文献DOI怎么找? 2559792
邀请新用户注册赠送积分活动 1520087
关于科研通互助平台的介绍 1480167