Cross-Part Learning for Fine-Grained Image Classification

判别式 人工智能 计算机科学 卷积神经网络 机器学习 特征学习 水准点(测量) 模式识别(心理学) 特征提取 特征(语言学) 背景(考古学) 上下文图像分类 图像(数学) 哲学 古生物学 生物 地理 语言学 大地测量学
作者
Man Liu,Chunjie Zhang,Huihui Bai,Riquan Zhang,Yao Zhao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 748-758 被引量:20
标识
DOI:10.1109/tip.2021.3135477
摘要

Recent techniques have achieved remarkable improvements depended on mining subtle yet distinctive features for fine-grained visual classification (FGVC). While prior works directly combine discriminative features extracted from different parts, we argue that the potential interactions between different parts and their abilities to category predictions should be taken into consideration, which enables significant parts to contribute more to the decision of the sub-category. To this end, we present a Cross-Part Convolutional Neural Network (CP-CNN) in a weakly supervised manner to explore cross-learning among multi-regional features. Specifically, the context transformer is implemented to encourage joint feature learning across different parts under the guidance of a navigator. The part with the highest confidence is regarded as a navigator to deliver distinguishing characteristics to the others with lower confidence while the complementary information is retained. To locate discriminative but subtle parts precisely, a part proposal generator (PPG) is designed with the feature enhancement blocks, through which complex scale variations caused by the viewpoint diversity can be effectively alleviated. Extensive experiments on three benchmark datasets demonstrate that our proposed method consistently outperforms existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助哈哈哈采纳,获得10
刚刚
Billy应助风趣青槐采纳,获得30
1秒前
3秒前
调皮鱼发布了新的文献求助10
4秒前
CodeCraft应助专注的醉波采纳,获得10
4秒前
GingerF应助雪山飞龙采纳,获得10
5秒前
愉快向彤完成签到 ,获得积分10
5秒前
6秒前
赘婿应助科yt采纳,获得10
7秒前
天天快乐应助清脆松采纳,获得10
8秒前
wjy应助SteveRogers采纳,获得10
9秒前
9秒前
上官若男应助nana湘采纳,获得10
10秒前
10秒前
HOO完成签到,获得积分10
10秒前
烟花应助kangyz采纳,获得10
11秒前
打打应助纸鸢采纳,获得10
11秒前
FF完成签到 ,获得积分10
12秒前
调皮鱼完成签到,获得积分10
13秒前
小机灵发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助10
13秒前
SciGPT应助李萌采纳,获得10
13秒前
勤恳的月饼完成签到,获得积分10
16秒前
16秒前
Aurora发布了新的文献求助10
17秒前
20秒前
111发布了新的文献求助20
20秒前
21秒前
21秒前
哈哈哈完成签到,获得积分20
22秒前
23秒前
Owen应助小蛙采纳,获得10
23秒前
24秒前
24秒前
lyt发布了新的文献求助10
24秒前
24秒前
yfe完成签到 ,获得积分10
26秒前
WXX发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
zx发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505933
关于积分的说明 11126932
捐赠科研通 3237900
什么是DOI,文献DOI怎么找? 1789404
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802976