Magnetometamaterials: Metamaterials with Tunable Magnetic Matter Conductivity

磁场 凝聚态物理 电子 磁铁 超材料 物理 导线
作者
Roozbeh Abedini-Nassab
出处
期刊:Physical review applied [American Physical Society]
卷期号:17 (1)
标识
DOI:10.1103/physrevapplied.17.014020
摘要

The transport of tiny particles is of great interest in the field of lab-on-a-chip. Here, by drawing inspiration from electric materials, we introduce magnetometamaterials, which, as opposed to electrons, transport magnetic particles (i.e., matter). The proposed metamaterial is composed of lithographically patterned disk-shaped micromagnets arranged in rows forming linear magnetic tracks on a silicon substrate. It is shown that by applying an external rotating magnetic field with the right frequency, the particles move along the magnetic tracks. The magnetic matter transport rate (i.e., magnetic matter conductivity) is tuned by adjusting the external magnetic field. We show that the particle transport is similar to the classical electron transport through a periodic lattice. At low frequencies, similar to the electrons at low temperatures, the particles move in closed loops around single magnets, resulting in an insulating regime. At higher frequencies, similar to the electrons at higher temperatures, some particles show the same behavior (i.e., move in closed loops); however, some others move along the magnetic tracks (i.e., demonstrate open trajectories). This behavior resembles a magnetic matter semiconductor. At even higher frequencies, all the particles show open trajectories along the magnetic tracks, and the device resembles a magnetic matter conductor. We define the operational ranges, both theoretically and experimentally, for both one- and two-dimensional magnetometamaterials. We show that, in an appropriate vertical bias field, the two-dimensional magnetometamaterials can transport the particles in arbitrary paths. The proposed metamaterial in this work can be used in designing circuits for transporting particles with crucial applications in biomedical engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默默早晨完成签到 ,获得积分10
2秒前
yang发布了新的文献求助10
4秒前
科研通AI6应助Jodie采纳,获得10
6秒前
二次元喵酱完成签到,获得积分10
6秒前
xinbowey完成签到,获得积分10
6秒前
鬼切发布了新的文献求助10
8秒前
搜集达人应助跳跃的翼采纳,获得10
10秒前
11秒前
困困羊完成签到 ,获得积分10
11秒前
LN给LN的求助进行了留言
12秒前
Yixuan_Zou完成签到,获得积分10
13秒前
14秒前
神内小天使完成签到,获得积分10
15秒前
Yixuan_Zou发布了新的文献求助10
16秒前
17秒前
18秒前
深情安青应助朴素的松采纳,获得10
20秒前
善学以致用应助伯言采纳,获得10
20秒前
张玮发布了新的文献求助10
22秒前
ri_290完成签到,获得积分10
24秒前
shiori发布了新的文献求助10
24秒前
科研通AI6应助Echo采纳,获得10
24秒前
31秒前
打打应助朴素的松采纳,获得10
31秒前
伯言发布了新的文献求助10
34秒前
NexusExplorer应助Lialilico采纳,获得10
35秒前
风格完成签到,获得积分10
36秒前
kingwhitewing发布了新的文献求助10
37秒前
38秒前
Aron发布了新的文献求助10
38秒前
43秒前
43秒前
烟花应助yang采纳,获得10
44秒前
Owen应助inter采纳,获得10
44秒前
lynn发布了新的文献求助10
48秒前
FLyu发布了新的文献求助10
48秒前
49秒前
小蘑菇应助土豆土豆采纳,获得10
49秒前
niNe3YUE应助研友_Ljqal8采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550