已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Magnetometamaterials: Metamaterials with Tunable Magnetic Matter Conductivity

磁场 凝聚态物理 电子 磁铁 超材料 物理 导线
作者
Roozbeh Abedini-Nassab
出处
期刊:Physical review applied [American Physical Society]
卷期号:17 (1)
标识
DOI:10.1103/physrevapplied.17.014020
摘要

The transport of tiny particles is of great interest in the field of lab-on-a-chip. Here, by drawing inspiration from electric materials, we introduce magnetometamaterials, which, as opposed to electrons, transport magnetic particles (i.e., matter). The proposed metamaterial is composed of lithographically patterned disk-shaped micromagnets arranged in rows forming linear magnetic tracks on a silicon substrate. It is shown that by applying an external rotating magnetic field with the right frequency, the particles move along the magnetic tracks. The magnetic matter transport rate (i.e., magnetic matter conductivity) is tuned by adjusting the external magnetic field. We show that the particle transport is similar to the classical electron transport through a periodic lattice. At low frequencies, similar to the electrons at low temperatures, the particles move in closed loops around single magnets, resulting in an insulating regime. At higher frequencies, similar to the electrons at higher temperatures, some particles show the same behavior (i.e., move in closed loops); however, some others move along the magnetic tracks (i.e., demonstrate open trajectories). This behavior resembles a magnetic matter semiconductor. At even higher frequencies, all the particles show open trajectories along the magnetic tracks, and the device resembles a magnetic matter conductor. We define the operational ranges, both theoretically and experimentally, for both one- and two-dimensional magnetometamaterials. We show that, in an appropriate vertical bias field, the two-dimensional magnetometamaterials can transport the particles in arbitrary paths. The proposed metamaterial in this work can be used in designing circuits for transporting particles with crucial applications in biomedical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
liushikai应助科研通管家采纳,获得20
3秒前
3秒前
6秒前
斑马兽发布了新的文献求助10
7秒前
研友_ZGjaGn完成签到,获得积分10
10秒前
11秒前
wwwteng呀完成签到,获得积分10
16秒前
17秒前
六沉完成签到 ,获得积分10
19秒前
LL完成签到,获得积分10
19秒前
kawayifenm发布了新的文献求助10
22秒前
22秒前
renxiaoting发布了新的文献求助10
22秒前
25秒前
28秒前
WangJL完成签到 ,获得积分10
30秒前
斯寜应助dffgghghh采纳,获得10
32秒前
华桦子完成签到 ,获得积分10
32秒前
33秒前
LJ徽完成签到 ,获得积分10
34秒前
35秒前
Spine发布了新的文献求助10
36秒前
11发布了新的文献求助10
37秒前
科研通AI5应助kaola采纳,获得10
37秒前
老实觅松完成签到 ,获得积分10
39秒前
39秒前
40秒前
LLL发布了新的文献求助10
42秒前
DAN完成签到 ,获得积分10
42秒前
44秒前
Felix发布了新的文献求助10
44秒前
sunshine发布了新的文献求助10
45秒前
45秒前
hhhh完成签到 ,获得积分10
48秒前
虚心的渊思完成签到 ,获得积分10
48秒前
renxiaoting发布了新的文献求助30
49秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770315
求助须知:如何正确求助?哪些是违规求助? 3315383
关于积分的说明 10175735
捐赠科研通 3030369
什么是DOI,文献DOI怎么找? 1662854
邀请新用户注册赠送积分活动 795203
科研通“疑难数据库(出版商)”最低求助积分说明 756612