Magnetometamaterials: Metamaterials with Tunable Magnetic Matter Conductivity

磁场 凝聚态物理 电子 磁铁 超材料 物理 导线
作者
Roozbeh Abedini-Nassab
出处
期刊:Physical review applied [American Physical Society]
卷期号:17 (1)
标识
DOI:10.1103/physrevapplied.17.014020
摘要

The transport of tiny particles is of great interest in the field of lab-on-a-chip. Here, by drawing inspiration from electric materials, we introduce magnetometamaterials, which, as opposed to electrons, transport magnetic particles (i.e., matter). The proposed metamaterial is composed of lithographically patterned disk-shaped micromagnets arranged in rows forming linear magnetic tracks on a silicon substrate. It is shown that by applying an external rotating magnetic field with the right frequency, the particles move along the magnetic tracks. The magnetic matter transport rate (i.e., magnetic matter conductivity) is tuned by adjusting the external magnetic field. We show that the particle transport is similar to the classical electron transport through a periodic lattice. At low frequencies, similar to the electrons at low temperatures, the particles move in closed loops around single magnets, resulting in an insulating regime. At higher frequencies, similar to the electrons at higher temperatures, some particles show the same behavior (i.e., move in closed loops); however, some others move along the magnetic tracks (i.e., demonstrate open trajectories). This behavior resembles a magnetic matter semiconductor. At even higher frequencies, all the particles show open trajectories along the magnetic tracks, and the device resembles a magnetic matter conductor. We define the operational ranges, both theoretically and experimentally, for both one- and two-dimensional magnetometamaterials. We show that, in an appropriate vertical bias field, the two-dimensional magnetometamaterials can transport the particles in arbitrary paths. The proposed metamaterial in this work can be used in designing circuits for transporting particles with crucial applications in biomedical engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr_Zhan完成签到 ,获得积分10
1秒前
孙傲发布了新的文献求助10
1秒前
FU发布了新的文献求助10
3秒前
xucc完成签到,获得积分10
3秒前
4秒前
小皮发布了新的文献求助10
4秒前
4秒前
隐形曼青应助ZeSheng采纳,获得10
5秒前
gy完成签到,获得积分10
6秒前
不将就发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
铭仔发布了新的文献求助10
10秒前
gxc关闭了gxc文献求助
10秒前
跳羚完成签到,获得积分10
12秒前
donk完成签到,获得积分10
13秒前
任性的诗兰完成签到,获得积分10
14秒前
15秒前
梅子黄时雨完成签到,获得积分10
16秒前
mk91发布了新的文献求助10
16秒前
孙傲完成签到,获得积分10
16秒前
铭仔完成签到,获得积分10
16秒前
小线团黑桃完成签到,获得积分10
17秒前
17秒前
科研小白完成签到,获得积分10
18秒前
PEI完成签到,获得积分10
19秒前
萱棚发布了新的文献求助10
20秒前
YOMU完成签到,获得积分10
20秒前
龙腾万里完成签到,获得积分10
21秒前
22秒前
我是老大应助青年才俊采纳,获得10
22秒前
大胆初雪发布了新的文献求助10
23秒前
23秒前
梵低发布了新的文献求助30
25秒前
无花果应助魔幻的忆南采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
小白鞋完成签到 ,获得积分10
26秒前
26秒前
sh发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851