Magnetometamaterials: Metamaterials with Tunable Magnetic Matter Conductivity

磁场 凝聚态物理 电子 磁铁 超材料 物理 导线
作者
Roozbeh Abedini-Nassab
出处
期刊:Physical review applied [American Physical Society]
卷期号:17 (1)
标识
DOI:10.1103/physrevapplied.17.014020
摘要

The transport of tiny particles is of great interest in the field of lab-on-a-chip. Here, by drawing inspiration from electric materials, we introduce magnetometamaterials, which, as opposed to electrons, transport magnetic particles (i.e., matter). The proposed metamaterial is composed of lithographically patterned disk-shaped micromagnets arranged in rows forming linear magnetic tracks on a silicon substrate. It is shown that by applying an external rotating magnetic field with the right frequency, the particles move along the magnetic tracks. The magnetic matter transport rate (i.e., magnetic matter conductivity) is tuned by adjusting the external magnetic field. We show that the particle transport is similar to the classical electron transport through a periodic lattice. At low frequencies, similar to the electrons at low temperatures, the particles move in closed loops around single magnets, resulting in an insulating regime. At higher frequencies, similar to the electrons at higher temperatures, some particles show the same behavior (i.e., move in closed loops); however, some others move along the magnetic tracks (i.e., demonstrate open trajectories). This behavior resembles a magnetic matter semiconductor. At even higher frequencies, all the particles show open trajectories along the magnetic tracks, and the device resembles a magnetic matter conductor. We define the operational ranges, both theoretically and experimentally, for both one- and two-dimensional magnetometamaterials. We show that, in an appropriate vertical bias field, the two-dimensional magnetometamaterials can transport the particles in arbitrary paths. The proposed metamaterial in this work can be used in designing circuits for transporting particles with crucial applications in biomedical engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
元气马完成签到,获得积分10
1秒前
长理物电强完成签到,获得积分10
1秒前
1秒前
Jane完成签到,获得积分10
1秒前
1秒前
桐桐应助钩子89采纳,获得10
1秒前
2秒前
tsenchanted完成签到,获得积分10
2秒前
Yy完成签到,获得积分10
2秒前
2秒前
宋宋完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
王计恩发布了新的文献求助10
3秒前
大模型应助uoiewo采纳,获得10
3秒前
脑洞疼应助CT采纳,获得10
3秒前
3秒前
桥木有舟完成签到,获得积分10
3秒前
haoguoliang完成签到,获得积分10
4秒前
4秒前
4秒前
mushini发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
Archy完成签到,获得积分10
6秒前
可爱的函函应助future采纳,获得10
6秒前
林天发布了新的文献求助30
6秒前
奥丁蒂法发布了新的文献求助10
6秒前
打打应助不爱科研采纳,获得10
6秒前
6秒前
赵浩楠发布了新的文献求助20
6秒前
7秒前
7秒前
8秒前
taoatao发布了新的文献求助10
8秒前
开放念云发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401