清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Network Load Perception Based Task Scheduler for Parallel Distributed Data Processing Systems

计算机科学 分布式计算 调度(生产过程) 负载平衡(电力) 数据传输 启发式 任务分析 并行计算 任务(项目管理) 实时计算 计算机网络 人工智能 运营管理 几何学 数学 管理 经济 网格
作者
Zhuo Tang,Zhanfei Xiao,Li Yang,Kailin He,Kenli Li
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 1352-1364
标识
DOI:10.1109/tcc.2021.3132627
摘要

In parallel distributed data processing frameworks like Spark and Flink, task scheduling has a great impact on cluster performance. Though task Scheduling has proven to be an NP-complete problem, a large number of researchers have proposed many heuristic rules to obtain approximate optimal solutions. But most of them ignore the fact that the resource requirements of tasks are dynamically changing during its runtime. Considering the overall task entire lives, the CPU utilization is often lower during the data transfer. Especially for most distributed data processing platforms, data transmission is time-consuming, which usually resulting in low overall CPU utilization. Similarly, network throughput during task calculations is also low in some cases. In this article, we propose a network load variation perception based heuristic task scheduling algorithm, and based on this implement a dual-phase pipeline task scheduler (D2PTS) from the perspective of dynamic resource requirements that aims at maximizing cluster resource utilization, as a supplement to existing data-parallel frameworks. D2PTS divides the states of task into two phases: network-intensive and network-free. To improve the overall resource utilities, this article proposes different algorithms to evaluate the execution time of network sensitive and network free phases respectively. When an executing task is in the network-free phase, D2PTS can additionally schedule a new network-intensive task at the right time. Under this scheduling policy, the two tasks sharing the same CPU core can be executed as a coarse-grained pipeline. This execution method can start tasks earlier and improve resource utilization. Finally, we have implemented our model prototype on Spark 2.4.3 and conducted a number of experiments to evaluate the performance of our model. Experimental results show that D2PTS can not only minimize application makespan, but also improve resource utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leon应助科研通管家采纳,获得20
5秒前
13秒前
亮总完成签到 ,获得积分10
15秒前
Romy211完成签到,获得积分10
20秒前
23秒前
海鹏完成签到 ,获得积分0
25秒前
7788完成签到,获得积分10
1分钟前
奋斗寄文完成签到,获得积分10
1分钟前
程程发布了新的文献求助10
1分钟前
空洛完成签到 ,获得积分10
1分钟前
四斤瓜完成签到 ,获得积分10
1分钟前
小成完成签到 ,获得积分10
1分钟前
huiluowork完成签到 ,获得积分10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
小梦完成签到,获得积分10
2分钟前
2分钟前
yujie完成签到 ,获得积分10
2分钟前
Joker完成签到,获得积分10
3分钟前
3分钟前
嗯哼哈哈发布了新的文献求助10
3分钟前
ZXD1989完成签到 ,获得积分10
4分钟前
Leon应助科研通管家采纳,获得20
4分钟前
abcdefg完成签到,获得积分10
4分钟前
yuntong完成签到 ,获得积分10
4分钟前
嗯哼哈哈完成签到,获得积分10
4分钟前
4分钟前
嗯哼哈哈发布了新的文献求助10
4分钟前
huanghe完成签到,获得积分10
5分钟前
5分钟前
淡然藏花完成签到 ,获得积分10
5分钟前
caohuijun发布了新的文献求助10
5分钟前
5分钟前
安然完成签到 ,获得积分10
5分钟前
科研狗完成签到 ,获得积分10
5分钟前
少年旭完成签到,获得积分10
5分钟前
5分钟前
如果半夏没有法完成签到,获得积分10
5分钟前
不安莛完成签到 ,获得积分10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131421
关于积分的说明 9391086
捐赠科研通 2831122
什么是DOI,文献DOI怎么找? 1556378
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890