已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A two-stage deep generative adversarial quality enhancement network for real-world 3D CT images

计算机科学 对抗制 人工智能 生成对抗网络 生成语法 质量(理念) 财产(哲学) 透视图(图形) 计算机视觉 图像质量 模式识别(心理学) 深度学习 图像(数学) 哲学 认识论
作者
Honggang Chen,Xiaohai He,Hong Yang,Junxi Feng,Qizhi Teng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:193: 116440-116440 被引量:7
标识
DOI:10.1016/j.eswa.2021.116440
摘要

High-quality (HQ) three-dimensional (3D) images are the premise of analyzing the properties of porous media such as rocks. X-ray computed tomography (CT) is one of the most widely used imaging tools to capture the 3D images of rock samples. Nevertheless, the quality (e.g., resolution, sharpness, and the signal-to-noise ratio) of the collected rock CT images may not meet the needs of practical applications in some cases due to the limitations of imaging systems, leading to inaccurate results of property analysis. In this paper, aiming at improving the quality of rock CT images as well as the accuracy of property analysis, we develop a two-stage deep generative adversarial quality enhancement network for real-world 3D CT images, namely the CTQENet. More specifically, the proposed CTQENet consists of a two-dimensional (2D) reconstruction module (2DRM) and a 3D fusion module (3DFM), which enhance the quality of 3D CT images from the perspective of 2D slices and 3D volumes, respectively. In order to remove artifacts and enhance the resolution of real-world CT images, the 2DRM takes the cycle-consistent generative adversarial network as the backbone to learn the mapping from low-quality (LQ) 2D slices to HQ ones without one-to-one paired training data. Then, the 3D CT volumes stacked by the reconstructed HQ slices along the x/y/z-axis are adaptively fused in the generative adversarial network-based 3DFM, to achieve more reliable 3D morphological structures. Qualitative and quantitative comparisons show the effectiveness of the proposed CTQENet for real-world 3D CT images of rock samples. In particular, the reconstructed HQ 3D CT images by CTQENet show similar morphological characteristics and statistical properties with HQ targets. This study makes it possible to obtain higher quality 3D CT images that partly exceed the limitations of CT imaging systems for better visual experience and more accurate property analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
barretace完成签到,获得积分10
4秒前
西音发布了新的文献求助10
5秒前
zzm发布了新的文献求助10
5秒前
Gheros发布了新的文献求助10
7秒前
8秒前
星辰大海应助sume24采纳,获得10
9秒前
9秒前
ff完成签到 ,获得积分10
9秒前
PTF完成签到,获得积分10
10秒前
11秒前
oneadd完成签到,获得积分10
11秒前
CodeCraft应助研友_59AB85采纳,获得10
11秒前
山水木发布了新的文献求助10
12秒前
酷波er应助jackten采纳,获得10
13秒前
13秒前
oneadd发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
changjing5638完成签到,获得积分10
17秒前
传奇3应助妖魔鬼怪快离开采纳,获得20
18秒前
动漫大师发布了新的文献求助30
18秒前
喜悦发布了新的文献求助10
19秒前
lenon完成签到,获得积分10
20秒前
义气靖仇完成签到,获得积分20
20秒前
21秒前
科研通AI2S应助dengdengdeng采纳,获得10
21秒前
121完成签到,获得积分10
23秒前
暴走瑶瑶应助wcy采纳,获得20
24秒前
义气靖仇发布了新的文献求助20
25秒前
卷卷应助喜悦采纳,获得10
27秒前
领导范儿应助喜悦采纳,获得10
27秒前
TOF完成签到,获得积分10
29秒前
傲娇的ye凡完成签到,获得积分10
29秒前
33秒前
没有名字完成签到 ,获得积分10
34秒前
34秒前
可爱的函函应助oyy采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745864
求助须知:如何正确求助?哪些是违规求助? 3288812
关于积分的说明 10060680
捐赠科研通 3004996
什么是DOI,文献DOI怎么找? 1650009
邀请新用户注册赠送积分活动 785727
科研通“疑难数据库(出版商)”最低求助积分说明 751216