已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Visible light-assisted thermal catalytic reverse water gas reaction over Cu-CeO2: The synergistic of hot electrons and oxygen vacancies induced by LSPR effect

催化作用 材料科学 化学工程 光化学 化学 氧气 X射线光电子能谱 分析化学(期刊)
作者
Zhou Yang,Min Zeng,Ke Wang,Xuanyu Yue,Xu Chen,Wenxin Dai,Xianzhi Fu
出处
期刊:Fuel [Elsevier]
卷期号:315: 123186-123186
标识
DOI:10.1016/j.fuel.2022.123186
摘要

Visible light assists Cu-CeO 2 catalyst to exhibit excellent RWGS catalytic activity and selectivity. The hot electrons induced by LSPR effect of Cu promote the dissociating formate and regeneration of oxygen vacancies, which accelerate the reverse water gas reaction. The construction of a light-assisted thermal catalytic system has great potential in the reverse water gas shift reaction (RWGS). To explore the role of light in the thermo-catalytic system, a prepared Cu-CeO 2 sample was performed for the RWGS reaction under visible light irradiation. It was found that Cu-CeO 2 sample shows an excellent RWGS catalytic activity and CO selectivity, and the production of CO with light introduction has been significantly increased by 30 % at 250 °C. A combination of In-situ DRIFTS, Quasi-situ EPR, and XPS characterization results demonstrate that under visible light irradiation, the localized surface plasmon resonance (LSPR) produced by Cu nanoparticles stimulates hot electrons transfer and attack to the bidentate formats and linear-CO intermediate species, resulting in that accelerating the decomposition and desorption of intermediate species into CO, but inhibiting further reduction of CO. Moreover, the spillover of H 2 from Cu to CeO 2 surface is also affected by light due to the observed regeneration of oxygen vacancies on the CeO 2 surface, which together influence the yield of CO. This work shows that introducing visible light could improve RWGS reaction activity and retain the selectivity of CO, which maybe provide a new approach to control the product selectivity for a thermal catalytic reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿竹完成签到,获得积分10
刚刚
2秒前
Bottle完成签到,获得积分10
4秒前
就有提高发布了新的文献求助10
5秒前
7秒前
breeze完成签到,获得积分10
9秒前
小二郎应助郑qqqq采纳,获得10
11秒前
12秒前
领导范儿应助Mr_老旭采纳,获得10
14秒前
kk完成签到 ,获得积分10
14秒前
planto发布了新的文献求助30
15秒前
15秒前
17秒前
孤芳自赏IrisKing完成签到 ,获得积分10
17秒前
ZL完成签到,获得积分10
19秒前
paofu泡芙发布了新的文献求助10
19秒前
科研通AI5应助航1采纳,获得10
20秒前
天天快乐应助Ye采纳,获得10
21秒前
stITW发布了新的文献求助10
22秒前
可久斯基完成签到 ,获得积分10
23秒前
24秒前
酷波er应助AltairKing采纳,获得10
25秒前
26秒前
纪震宇发布了新的文献求助10
27秒前
单薄凌晴完成签到 ,获得积分10
29秒前
30秒前
ZL发布了新的文献求助10
31秒前
31秒前
凯文完成签到 ,获得积分10
32秒前
33秒前
米米发布了新的文献求助10
34秒前
氟锑酸完成签到 ,获得积分10
35秒前
深情安青应助柔弱的忆灵采纳,获得10
35秒前
planto发布了新的文献求助10
36秒前
AltairKing发布了新的文献求助10
36秒前
无花果应助shen采纳,获得10
36秒前
航1发布了新的文献求助10
36秒前
领导范儿应助ichris采纳,获得10
37秒前
乐乐应助ZL采纳,获得10
38秒前
科研通AI5应助纪震宇采纳,获得10
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544330
求助须知:如何正确求助?哪些是违规求助? 3121530
关于积分的说明 9347654
捐赠科研通 2819788
什么是DOI,文献DOI怎么找? 1550415
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265