ProstAttention-Net: A deep attention model for prostate cancer segmentation by aggressiveness in MRI scans

前列腺癌 分割 前列腺 前列腺切除术 磁共振成像 分级(工程) 医学 人工智能 前列腺活检 卡帕 接收机工作特性 计算机科学 模式识别(心理学) 放射科 癌症 数学 内科学 工程类 土木工程 几何学
作者
Audrey Duran,Gaspard Dussert,Olivier Rouvière,Tristan Jaouen,Pierre-Marc Jodoin,Carole Lartizien
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102347-102347 被引量:64
标识
DOI:10.1016/j.media.2021.102347
摘要

Multiparametric magnetic resonance imaging (mp-MRI) has shown excellent results in the detection of prostate cancer (PCa). However, characterizing prostate lesions aggressiveness in mp-MRI sequences is impossible in clinical practice, and biopsy remains the reference to determine the Gleason score (GS). In this work, we propose a novel end-to-end multi-class network that jointly segments the prostate gland and cancer lesions with GS group grading. After encoding the information on a latent space, the network is separated in two branches: 1) the first branch performs prostate segmentation 2) the second branch uses this zonal prior as an attention gate for the detection and grading of prostate lesions. The model was trained and validated with a 5-fold cross-validation on a heterogeneous series of 219 MRI exams acquired on three different scanners prior prostatectomy. In the free-response receiver operating characteristics (FROC) analysis for clinically significant lesions (defined as GS >6) detection, our model achieves 69.0%±14.5% sensitivity at 2.9 false positive per patient on the whole prostate and 70.8%±14.4% sensitivity at 1.5 false positive when considering the peripheral zone (PZ) only. Regarding the automatic GS group grading, Cohen's quadratic weighted kappa coefficient (κ) is 0.418±0.138, which is the best reported lesion-wise kappa for GS segmentation to our knowledge. The model has encouraging generalization capacities with κ=0.120±0.092 on the PROSTATEx-2 public dataset and achieves state-of-the-art performance for the segmentation of the whole prostate gland with a Dice of 0.875±0.013. Finally, we show that ProstAttention-Net improves performance in comparison to reference segmentation models, including U-Net, DeepLabv3+ and E-Net. The proposed attention mechanism is also shown to outperform Attention U-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
vvvvyl应助monkey采纳,获得30
刚刚
灯灯发布了新的文献求助10
1秒前
Ava应助nnn采纳,获得10
1秒前
丘比特应助关耳朵采纳,获得10
2秒前
半圆亻发布了新的文献求助10
2秒前
蛋堡完成签到,获得积分10
2秒前
传奇3应助半岛铁拳采纳,获得10
3秒前
bkagyin应助刘星星采纳,获得10
3秒前
3秒前
情怀应助文承龙采纳,获得10
4秒前
4秒前
Agoni发布了新的文献求助10
5秒前
eagle14835完成签到,获得积分10
5秒前
d22110652发布了新的文献求助30
6秒前
楼梯口无头女孩完成签到,获得积分10
6秒前
疯狂的匕应助乌鸦坐飞机采纳,获得10
7秒前
鹅1发布了新的文献求助10
7秒前
彭于晏应助pathway采纳,获得10
7秒前
王w发布了新的文献求助10
8秒前
赘婿应助千百度采纳,获得10
10秒前
星辰完成签到,获得积分10
10秒前
11秒前
AFAGM发布了新的文献求助10
12秒前
925完成签到,获得积分10
12秒前
13秒前
乔十一发布了新的文献求助10
14秒前
14秒前
月牙湾完成签到,获得积分20
14秒前
微笑完成签到,获得积分10
14秒前
灯灯完成签到,获得积分10
14秒前
阡陌完成签到,获得积分10
15秒前
yoke完成签到,获得积分10
15秒前
ccc发布了新的文献求助20
16秒前
16秒前
Joan关注了科研通微信公众号
16秒前
17秒前
17秒前
领导范儿应助陆千万采纳,获得10
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467902
求助须知:如何正确求助?哪些是违规求助? 3060792
关于积分的说明 9073352
捐赠科研通 2751341
什么是DOI,文献DOI怎么找? 1509629
科研通“疑难数据库(出版商)”最低求助积分说明 697393
邀请新用户注册赠送积分活动 697393