Industrial serial robot calibration considering geometric and deformation errors

校准 机器人校准 冗余(工程) 计算机科学 变形(气象学) 算法 工业机器人 转化(遗传学) 补偿(心理学) 机器人 计算机视觉 数学 人工智能 机器人运动学 统计 物理 操作系统 心理学 生物化学 化学 气象学 精神分析 基因 移动机器人
作者
Yimin Song,Mingming Liu,Binbin Lian,Qi Yang,Yan Wang,Jin Wu,Qi Li
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:76: 102328-102328 被引量:9
标识
DOI:10.1016/j.rcim.2022.102328
摘要

The absolute accuracy of the industrial serial robot is affected by the geometric errors from machining and assembling, and the elastic deformation errors from the large payload and flexible joints. The inherent features and correlations of both geometric and deformation errors have not been thoroughly discussed, leading to the unsatisfactory calibration results. In this paper, the geometric and deformation propagations are separately deduced and then combined to form a complete model having both types of errors. Geometric errors, i.e. the joint twist errors and initial transformation errors, are described at the initial pose and remain the same during the task execution of the robot. But the deformation errors are evaluated at the current pose and change values versus the change of poses. Based on the features of both errors, it is summarized that the deflections of joints are independent from the geometric errors and would not affect the geometric error propagation. Then, the redundancy within the geometric errors is proved and the singularity between two types of errors are discussed. A Generalized Cross-Validation method is adopted to solve the ill-conditioning problem caused by the different unit of the identified parameters. The simultaneous identification of both types of errors are implemented. Finally, a step-by-step compensation is proposed for a convenient error correction. A UR3 robot is taken as an example to illustrate and verify the proposed calibration method. The mean positioning absolute accuracy is 0.4672 mm after calibration. Comparisons with the calibration of only geometric errors indicates the proposed calibration method leads to higher absolute accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落寞晓灵完成签到,获得积分10
1秒前
ORAzzz应助翠翠采纳,获得20
2秒前
zoe完成签到,获得积分10
2秒前
习习应助学术小白采纳,获得10
2秒前
3秒前
4秒前
tianny关注了科研通微信公众号
5秒前
5秒前
CO2发布了新的文献求助10
5秒前
桐桐应助zhangscience采纳,获得10
6秒前
求助发布了新的文献求助10
7秒前
buno应助zoe采纳,获得10
8秒前
junzilan发布了新的文献求助10
8秒前
8秒前
细品岁月完成签到 ,获得积分10
8秒前
细心书蕾完成签到 ,获得积分10
9秒前
无花果应助l11x29采纳,获得10
11秒前
11秒前
老詹头发布了新的文献求助10
11秒前
思源应助叫滚滚采纳,获得10
12秒前
13秒前
刘歌完成签到 ,获得积分10
13秒前
阿巡完成签到,获得积分10
13秒前
Chen完成签到,获得积分10
15秒前
LSH970829发布了新的文献求助10
15秒前
哈哈哈完成签到 ,获得积分10
16秒前
汤姆完成签到,获得积分10
16秒前
18秒前
18秒前
翠翠完成签到,获得积分10
19秒前
19秒前
LSH970829完成签到,获得积分10
20秒前
Lyg完成签到,获得积分20
21秒前
坚强的樱发布了新的文献求助10
21秒前
baodingning完成签到,获得积分10
22秒前
22秒前
公茂源发布了新的文献求助30
22秒前
热爱完成签到,获得积分10
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808