Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures

内化 纳米棒 内吞作用 纳米技术 纳米结构 材料科学 透射电子显微镜 化学 生物化学 细胞
作者
Yi-Feng Wang,Qingrong Zhang,Falin Tian,Hongda Wang,Yufei Wang,Xiaowei Ma,Qianqian Huang,Mingjun Cai,Yinglu Ji,Xiaochun Wu,Yaling Gan,Yan Yan,Kenneth A. Dawson,Shutao Guo,Jinchao Zhang,Xinghua Shi,Yuping Shan,Xing‐Jie Liang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (3): 4059-4071 被引量:20
标识
DOI:10.1021/acsnano.1c09684
摘要

Endocytosis, as one of the main ways for nanostructures enter cells, is affected by several aspects, and shape is an especially critical aspect during the endocytosis of nanostructures. However, it has remained challenging to capture the dynamic internalization behaviors of rod-shaped nanostructures while also probing the mechanical aspects of the internalization. Here, using the atomic force microscopy-based force tracing technique, transmission electron microscopy, and molecular dynamic simulation, we mapped the detailed internalization behaviors of rod-shaped nanostructures with different aspect ratios at the single-particle level. We found that the gold nanorod is endocytosed in a noncontinuous and force-rebound rotation manner, herein named "intermittent rotation". The force tracing test indicated that the internalization force (∼81 pN, ∼108 pN, and ∼157 pN) and time (∼0.56 s, ∼0.66 s, and ∼1.14 s for a 12.10 nm × 11.96 nm gold nanosphere and 26.15 nm × 13.05 nm and 48.71 nm × 12.45 nm gold nanorods, respectively) are positively correlated with the aspect ratios. However, internalization speed is negatively correlated with internalization time, irrespective of the aspect ratio. Further, the energy analysis suggested that intermittent rotation from the horizontal to vertical direction can reduce energy dissipation during the internalization process. Thus, to overcome the energy barrier of internalization, the number and angle of rotation increases with aspect ratios. Our findings provide critical missing evidence of rod-shaped nanostructure's internalization, which is essential for fundamentally understanding the internalization mechanism in living cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小知了完成签到,获得积分10
1秒前
2秒前
xzy998应助科研通管家采纳,获得10
2秒前
Akjan应助科研通管家采纳,获得10
2秒前
wmm20035完成签到,获得积分10
2秒前
如意竺完成签到,获得积分10
3秒前
snow完成签到,获得积分10
5秒前
CHSLN完成签到 ,获得积分10
6秒前
qin完成签到,获得积分10
8秒前
爱丽丝应助leo采纳,获得10
10秒前
清秀龙猫完成签到 ,获得积分10
11秒前
bingo完成签到,获得积分10
17秒前
youngyang完成签到 ,获得积分10
17秒前
Salt完成签到 ,获得积分10
19秒前
Nicole完成签到 ,获得积分10
19秒前
爱笑半雪完成签到,获得积分10
21秒前
1122完成签到 ,获得积分10
21秒前
震动的沉鱼完成签到 ,获得积分10
22秒前
濮阳盼曼完成签到,获得积分10
23秒前
刘清河完成签到 ,获得积分10
23秒前
我是125完成签到,获得积分10
24秒前
和谐曼凝完成签到 ,获得积分10
25秒前
凌晨五点的完成签到,获得积分10
26秒前
重要铃铛完成签到 ,获得积分10
28秒前
csg888888完成签到,获得积分10
28秒前
29秒前
deallyxyz完成签到,获得积分10
30秒前
科研通AI2S应助Robe采纳,获得10
31秒前
善学以致用应助洁净斑马采纳,获得10
33秒前
33秒前
Urusaiina完成签到,获得积分10
35秒前
杨杨杨完成签到,获得积分10
35秒前
wanghua完成签到,获得积分10
38秒前
燕子完成签到,获得积分10
38秒前
caoyulongchn完成签到,获得积分10
39秒前
39秒前
40秒前
41秒前
喜悦的依琴完成签到,获得积分10
41秒前
科奇给11111111111111的求助进行了留言
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015