Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures

内化 纳米棒 内吞作用 纳米技术 纳米结构 材料科学 透射电子显微镜 化学 生物化学 细胞
作者
Yi-Feng Wang,Qingrong Zhang,Falin Tian,Hongda Wang,Yufei Wang,Xiaowei Ma,Qianqian Huang,Mingjun Cai,Yinglu Ji,Xiaochun Wu,Yaling Gan,Yan Yan,Kenneth A. Dawson,Shutao Guo,Jinchao Zhang,Xinghua Shi,Yuping Shan,Xing‐Jie Liang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (3): 4059-4071 被引量:18
标识
DOI:10.1021/acsnano.1c09684
摘要

Endocytosis, as one of the main ways for nanostructures enter cells, is affected by several aspects, and shape is an especially critical aspect during the endocytosis of nanostructures. However, it has remained challenging to capture the dynamic internalization behaviors of rod-shaped nanostructures while also probing the mechanical aspects of the internalization. Here, using the atomic force microscopy-based force tracing technique, transmission electron microscopy, and molecular dynamic simulation, we mapped the detailed internalization behaviors of rod-shaped nanostructures with different aspect ratios at the single-particle level. We found that the gold nanorod is endocytosed in a noncontinuous and force-rebound rotation manner, herein named "intermittent rotation". The force tracing test indicated that the internalization force (∼81 pN, ∼108 pN, and ∼157 pN) and time (∼0.56 s, ∼0.66 s, and ∼1.14 s for a 12.10 nm × 11.96 nm gold nanosphere and 26.15 nm × 13.05 nm and 48.71 nm × 12.45 nm gold nanorods, respectively) are positively correlated with the aspect ratios. However, internalization speed is negatively correlated with internalization time, irrespective of the aspect ratio. Further, the energy analysis suggested that intermittent rotation from the horizontal to vertical direction can reduce energy dissipation during the internalization process. Thus, to overcome the energy barrier of internalization, the number and angle of rotation increases with aspect ratios. Our findings provide critical missing evidence of rod-shaped nanostructure's internalization, which is essential for fundamentally understanding the internalization mechanism in living cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利紫山完成签到,获得积分10
1秒前
丸子完成签到 ,获得积分10
1秒前
min完成签到,获得积分10
1秒前
Rath11发布了新的文献求助10
2秒前
2秒前
脑洞疼应助小唐采纳,获得10
3秒前
与落发布了新的文献求助10
3秒前
搜集达人应助是小杨呀采纳,获得10
4秒前
成就忻发布了新的文献求助10
4秒前
默默幼枫发布了新的文献求助10
5秒前
Hello应助zhong采纳,获得30
5秒前
zlc发布了新的文献求助150
6秒前
QAQ完成签到,获得积分10
6秒前
ZengJuan完成签到 ,获得积分10
6秒前
7秒前
小乐发布了新的文献求助10
8秒前
鹏826完成签到 ,获得积分10
8秒前
Cu完成签到,获得积分10
8秒前
huco完成签到,获得积分10
10秒前
zcydbttj2011完成签到 ,获得积分10
10秒前
与落完成签到,获得积分10
11秒前
11秒前
ziru完成签到 ,获得积分10
11秒前
三点半完成签到 ,获得积分10
12秒前
科研通AI5应助多喝热水采纳,获得10
12秒前
Neonoes发布了新的文献求助10
13秒前
meng完成签到,获得积分10
13秒前
16秒前
16秒前
windyhill完成签到,获得积分10
16秒前
燕一刀发布了新的文献求助10
17秒前
呜呜完成签到,获得积分10
17秒前
IDHNAPHO发布了新的文献求助10
21秒前
miketyson完成签到,获得积分10
22秒前
李爱国应助木木采纳,获得10
23秒前
23秒前
shark发布了新的文献求助10
27秒前
义气山柳应助害羞的醉卉采纳,获得10
27秒前
27秒前
花生完成签到 ,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674899
求助须知:如何正确求助?哪些是违规求助? 3229968
关于积分的说明 9788050
捐赠科研通 2940642
什么是DOI,文献DOI怎么找? 1612151
邀请新用户注册赠送积分活动 761064
科研通“疑难数据库(出版商)”最低求助积分说明 736577