吸附
化学
锑
核化学
无机化学
氧化物
物理化学
有机化学
作者
Ruiping Liu,Feng Liu,Chengzhi Hu,Zan He,Huijuan Liu,Jiuhui Qu
标识
DOI:10.1016/j.jhazmat.2015.08.020
摘要
The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe-Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Qmax,Sb(V)) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd(2+) exhibited a more significant positive effect than both calcium ion (Ca(2+)) and manganese ion (Mn(2+)). Cd(2+) showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca(2+) and Mn(2+). The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pHi) range from 2 to 9, and QSb(V) decreases whereas QCd(II) increases with elevated pHi. Their combined values, as expressed by QSb(V)+Cd(II), amount to about 2 mmol/g and vary slightly in the pHi range 4-9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).
科研通智能强力驱动
Strongly Powered by AbleSci AI