InferenceMAP: mapping of single-molecule dynamics with Bayesian inference

贝叶斯概率 计算机科学 生物系统 推论 领域(数学) 软件 贝叶斯推理 人工智能 数据挖掘 生物 数学 纯数学 程序设计语言
作者
Mohamed El Beheiry,Maxime Dahan,Jean‐Baptiste Masson
出处
期刊:Nature Methods [Nature Portfolio]
卷期号:12 (7): 594-595 被引量:72
标识
DOI:10.1038/nmeth.3441
摘要

Single-molecule imaging has become ubiquitous in biophysics, biology, biochemistry and biotechnology, covering a large range of in vitro and in vivo applications. This ever-growing field now requires new and reliable statistical tools for data analysis. This is especially true for high-density single-molecule tracking methods that yield massive amounts of data and invite the use of statistics-based methods for analysis. Of particular importance is the extraction of dynamic properties (such as diffusion and transport parameters) and the ability to map these properties at different spatial scales (up to the full extent of the cell).Bayesian analysis is a powerful method that has recently garnered interest in the treatment of single-molecule trajectories. Previously, we have shown that it provides an efficient means for estimating the relevant physical parameters that characterize the motion of individual molecules. Of particular importance, we have shown that interaction fields (which are systematically neglected in most approaches) play a paramount role in the long-term dynamics of biomolecules.With this motivation, we present InferenceMAP, an interactive software tool that uses a powerful Bayesian technique to extract the parameters that describe the motion of individual molecules from single-molecule trajectories. The main features of our tool include:⋅A versatile calculation platform for estimating dynamic parameters, including the ability to specify relevant prior probabilities.⋅Adaptive meshing methods to conform to different temporal and spatial scales⋅The ability to generate vast three-dimensional landscapes of single-molecule dynamicsWe present relevant applications inside lipid rafts, glycine receptors, and HIV assembly platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助木头人采纳,获得10
刚刚
刚刚
1秒前
端庄断秋发布了新的文献求助10
1秒前
优雅幻天发布了新的文献求助20
1秒前
haxihei完成签到,获得积分10
1秒前
无花果应助mata19采纳,获得10
1秒前
1秒前
feifei完成签到,获得积分10
2秒前
2秒前
2秒前
选择性哑巴完成签到,获得积分10
2秒前
wu完成签到,获得积分10
2秒前
2秒前
SL发布了新的文献求助10
2秒前
3秒前
简单平松发布了新的文献求助10
3秒前
852应助wjswift采纳,获得30
3秒前
4秒前
红豆发布了新的文献求助10
4秒前
feifei发布了新的文献求助10
4秒前
粗暴的冰菱完成签到,获得积分10
4秒前
aby发布了新的文献求助10
5秒前
Akim应助bbbb采纳,获得30
5秒前
舒适数据线应助端庄断秋采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
Lars发布了新的文献求助10
7秒前
酷波er应助careS采纳,获得30
7秒前
7秒前
wtvua发布了新的文献求助10
7秒前
7秒前
7秒前
CSHAN完成签到,获得积分10
8秒前
田様应助龙傲天采纳,获得10
8秒前
MZCCaiajie完成签到,获得积分10
8秒前
肥羊七号完成签到 ,获得积分10
8秒前
feng发布了新的文献求助10
9秒前
linger发布了新的文献求助10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406