摘要
Purpose To evaluate the biomechanical and design characteristics of all-suture anchors. Methods All-suture anchors were tested in fresh porcine cortical bone and biphasic polyurethane foam blocks by cyclic loading (10-100 N for 200 cycles), followed by destructive testing parallel to the insertion axis at 12.5 mm/s. Endpoints included ultimate failure load, displacement at 100 and 200 cycles, stiffness, and failure mode. Anchors tested included JuggerKnot (1.4, 1.5, and 2.8), Iconix (1, 2, and 3), Y-knot (1.3, 1.8, and 2.8), Q-Fix (1.8 and 2.8), and Draw Tight (1.8 and 3.2). Results The mean ultimate failure strength of the triple-loaded anchors (564 ± 42 N) was significantly greater than the mean ultimate failure strength of the double-loaded anchors (465 ± 33 N) (P = .017), and the double-loaded anchors were stronger than the single-loaded anchors (256 ± 35 N) (P < .0001). No difference was found between the results in porcine bone and biphasic polyurethane foam. None of these anchors demonstrated 5 mm or 10 mm of displacement during cyclic loading. The Y-Knot demonstrated greater displacement than the JuggerKnot and Q-Fix (P = .025) but not the Iconix and Draw Tight (P > .05). The most common failure mode varied and was suture breaking for the Q-Fix (97%), JuggerKnot (81%), and Iconix anchors (58%), anchor pullout with the Draw Tight (76%), whereas the Y-Knot was 50% suture breaking and 50% anchor pullout. Conclusions The ultimate failure load of an all-suture anchor is correlated directly with its number of sutures. With cyclic loading, the Y-Knot demonstrated greater displacement than the JuggerKnot and Q-Fix but not the Iconix and Draw Tight. JuggerKnot (81%) and Q-Fix (97%) anchors failed by suture breaking, whereas the Draw Tight anchor failed by anchor pullout (76%). Clinical Relevance All-suture anchors vary in strength and performance, and these factors may influence clinical success. Biphasic polyurethane foam is a validated model for suture anchor testing. To evaluate the biomechanical and design characteristics of all-suture anchors. All-suture anchors were tested in fresh porcine cortical bone and biphasic polyurethane foam blocks by cyclic loading (10-100 N for 200 cycles), followed by destructive testing parallel to the insertion axis at 12.5 mm/s. Endpoints included ultimate failure load, displacement at 100 and 200 cycles, stiffness, and failure mode. Anchors tested included JuggerKnot (1.4, 1.5, and 2.8), Iconix (1, 2, and 3), Y-knot (1.3, 1.8, and 2.8), Q-Fix (1.8 and 2.8), and Draw Tight (1.8 and 3.2). The mean ultimate failure strength of the triple-loaded anchors (564 ± 42 N) was significantly greater than the mean ultimate failure strength of the double-loaded anchors (465 ± 33 N) (P = .017), and the double-loaded anchors were stronger than the single-loaded anchors (256 ± 35 N) (P < .0001). No difference was found between the results in porcine bone and biphasic polyurethane foam. None of these anchors demonstrated 5 mm or 10 mm of displacement during cyclic loading. The Y-Knot demonstrated greater displacement than the JuggerKnot and Q-Fix (P = .025) but not the Iconix and Draw Tight (P > .05). The most common failure mode varied and was suture breaking for the Q-Fix (97%), JuggerKnot (81%), and Iconix anchors (58%), anchor pullout with the Draw Tight (76%), whereas the Y-Knot was 50% suture breaking and 50% anchor pullout. The ultimate failure load of an all-suture anchor is correlated directly with its number of sutures. With cyclic loading, the Y-Knot demonstrated greater displacement than the JuggerKnot and Q-Fix but not the Iconix and Draw Tight. JuggerKnot (81%) and Q-Fix (97%) anchors failed by suture breaking, whereas the Draw Tight anchor failed by anchor pullout (76%).