Understanding the Effects of Defects on Phase Transformation Kinetics in Olivine LiFePO4 Particles

橄榄石 扩散 相(物质) 各向异性 动力学 材料科学 热扩散率 Crystal(编程语言) 结晶学 分析化学(期刊) 化学 矿物学 热力学 物理 量子力学 有机化学 色谱法 程序设计语言 计算机科学
作者
Hong Liang,Linsen Li,Song Jin,Ming Tang
出处
期刊:Meeting abstracts 卷期号:MA2017-01 (22): 1152-1152
标识
DOI:10.1149/ma2017-01/22/1152
摘要

Effects of anti-site defects on reducing Li diffusion anisotropy in LiFePO 4 single crystal have been experimentally [1] and theoretically [2, 3] examined. The strongly anisotropic Li diffusion in olivine phosphates were firstly reported by first-principle calculations by Morgan et al. [4], and later confirmed by experiment [5]. However, the theoretical Li diffusivity (D=1x10 -8 cm 2 /s) in defect-free LiFePO 4 single crystals are several orders of magnitude larger than experimentally measured values in the range of 10 -11 – 10 -14 cm 2 /s. Subsequent calculations by Malik et al. [2] and Dathar et al. [3] confirmed that anti-site defects not only block the [010] diffusion channels but also decrease the energy barrier for inter-channel Li hopping, effectively reducing Li diffusion anisotropy. In particular, Amin et al. [1] reported the comparable Li diffusivities along the three axes in millimeter-sized LiFePO 4 single crystals containing 2.5-3% Li-Fe anti-site defects. Although the reduced Li diffusion anisotropy in LiFePO 4 single crystal is understood, the effects of anti-site defects on phase transformation kinetics in olivine LiFePO 4 particles have not been clarified. Here we show that both the phase transformation kinetics and the surface reaction kinetics of LiFePO 4 particles will be significantly affected by the anti-site defects. Recently, we combine operando hard X-ray spectroscopic imaging and phase-field modeling to show two-dimensional (2D) Li diffusion behaviors in micro-sized LiFePO 4 rod containing ~3% Li-Fe anti-site defects. We obtain direct evidence that Li ions can be intercalated through the (100)/(001) surfaces, contradicting a common belief that only the (010) surface of LiFePO 4 is electrochemically active. This study not only presents the first experimental confirmation of the previously hypothesized surface-reaction-limited (SRL) [6] phase boundary migration in LiFePO 4 , but also reveals a new hybrid mode of phase transformation, where the growth of new phase is controlled by surface reaction or Li diffusion in different crystallographic directions. Based on these findings, we propose the existence of three distinct kinetic regimes (SRL, hybrid, and bulk-diffusion-limited (BDL)) of phase transformations of LiFePO 4 and potentially many other intercalation compounds undergoing first-order phase transformations (as shown in Figure 1a). In particular, our phase-field simulations show that 2D Li diffusion can significantly enhance Li insertion kinetics in SRL regime. In a LiFePO 4 nanoparticle of 200 nm x 50 nm x L nm ([100] x [010] x [001]), our simulation results (Figure 1b) show that the traveling constant velocity of (100) straight phase boundary driven by 2D Li diffusion (D=1x10 -11 cm 2 /s along [100] and [010]) is one magnitude larger than the velocity of the phase boundary driven by 1D Li diffusion with infinite diffusivity along [010]. The latter one is calculated by SCB theory [6]. Anti-site defects are commonly believed to deteriorate high rate performances of LiFePO 4 , due to its blocking to the 1D Li diffusion along [010]. Our counterintuitive finding, however, show that the enhanced Li diffusion along [100] by Li inter-channel hopping around the defects [2, 3] significantly enhance surface reaction kinetics by activating large fraction of electrochemically surface for Li insertion. The maximum phase boundary velocity driven by 2D Li diffusion is linear to particle size along [100] and inversely linear to thickness along [010]. Therefore, we propose that LiFePO 4 nanosheets with large (010) surface and small thickness along [010] is beneficial for high rate capability and high energy density. This is consistent to experimental observations. Our studies show the important effects of anti-site defects on phase transformation kinetics and surface reaction kinetics in LiFePO 4 . This will provide new insights on potential avenues to improve performances of olivine electrodes via engineering anti-site defect formation and distribution. References: Amin, R.; Maier, J.; Balaya, P.; Chen, D. P.; Lin, C. T. Ionic and electronic transport in single crystalline LiFePO 4 grown by optical floating zone technique. Solid State Ionics 2008 , 179, 1683-1687. Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 2010 , 10, 4123-4127. Dathar, G. K. P.; Sheppard, D.; Stevenson, K. J.; Henkelman, G. Calculations of Li-ion diffusion in olivine phosphates. Chem. Mater. 2011 , 23, 4032–4037. Morgan, D.; Van der Ven, A.; Ceder, G. Li Conductivity in Li x MPO 4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 2004 , 7, A30. Nishimura, S.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M.; Yamada, A. Experimental visualization of lithium diffusion in Li x FePO 4 . Nature Mater. 2008 , 7, 707. Singh, G. K.; Ceder, G.; Bazant, M. Z. Intercalation dynamics in rechargeable battery materials: General theory and phase-transformation waves in LiFePO 4 . Electrochim. Acta 2008 , 53, 7599-7613. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研野狗完成签到 ,获得积分10
2秒前
英姑应助书生采纳,获得10
2秒前
ltxinanjiao完成签到,获得积分10
4秒前
jonghuang发布了新的文献求助10
4秒前
JoaquinH完成签到,获得积分10
4秒前
5秒前
山野桃饼完成签到,获得积分10
5秒前
crucible发布了新的文献求助10
7秒前
科研通AI2S应助等后来呢采纳,获得10
7秒前
01259完成签到 ,获得积分10
8秒前
8秒前
星辰大海应助Candice采纳,获得10
9秒前
pigeonKimi完成签到,获得积分10
10秒前
AteeqBaloch完成签到,获得积分10
10秒前
wwz完成签到 ,获得积分10
10秒前
我不困完成签到,获得积分10
11秒前
稳重的蜡烛完成签到,获得积分10
12秒前
小北完成签到,获得积分20
12秒前
gyx完成签到,获得积分10
12秒前
南国完成签到,获得积分10
12秒前
jonghuang完成签到,获得积分10
13秒前
个性的大地完成签到,获得积分10
14秒前
14秒前
Hrentiken完成签到,获得积分10
15秒前
33完成签到 ,获得积分10
15秒前
15秒前
16秒前
kysl完成签到,获得积分10
16秒前
zzahyc完成签到 ,获得积分10
17秒前
小北发布了新的文献求助20
19秒前
shierfang完成签到 ,获得积分10
20秒前
20秒前
Candice发布了新的文献求助10
21秒前
8R60d8应助迷路的曼梅采纳,获得20
21秒前
laogao完成签到,获得积分10
22秒前
大个应助小鱼采纳,获得10
26秒前
DELI完成签到 ,获得积分10
27秒前
孤独丹秋完成签到,获得积分10
28秒前
红叶完成签到,获得积分10
28秒前
啊泉完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769049
捐赠科研通 2440325
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792