已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Understanding the Effects of Defects on Phase Transformation Kinetics in Olivine LiFePO4 Particles

橄榄石 扩散 相(物质) 各向异性 动力学 材料科学 热扩散率 Crystal(编程语言) 结晶学 分析化学(期刊) 化学 矿物学 热力学 物理 量子力学 有机化学 色谱法 程序设计语言 计算机科学
作者
Hong Liang,Linsen Li,Song Jin,Ming Tang
出处
期刊:Meeting abstracts 卷期号:MA2017-01 (22): 1152-1152
标识
DOI:10.1149/ma2017-01/22/1152
摘要

Effects of anti-site defects on reducing Li diffusion anisotropy in LiFePO 4 single crystal have been experimentally [1] and theoretically [2, 3] examined. The strongly anisotropic Li diffusion in olivine phosphates were firstly reported by first-principle calculations by Morgan et al. [4], and later confirmed by experiment [5]. However, the theoretical Li diffusivity (D=1x10 -8 cm 2 /s) in defect-free LiFePO 4 single crystals are several orders of magnitude larger than experimentally measured values in the range of 10 -11 – 10 -14 cm 2 /s. Subsequent calculations by Malik et al. [2] and Dathar et al. [3] confirmed that anti-site defects not only block the [010] diffusion channels but also decrease the energy barrier for inter-channel Li hopping, effectively reducing Li diffusion anisotropy. In particular, Amin et al. [1] reported the comparable Li diffusivities along the three axes in millimeter-sized LiFePO 4 single crystals containing 2.5-3% Li-Fe anti-site defects. Although the reduced Li diffusion anisotropy in LiFePO 4 single crystal is understood, the effects of anti-site defects on phase transformation kinetics in olivine LiFePO 4 particles have not been clarified. Here we show that both the phase transformation kinetics and the surface reaction kinetics of LiFePO 4 particles will be significantly affected by the anti-site defects. Recently, we combine operando hard X-ray spectroscopic imaging and phase-field modeling to show two-dimensional (2D) Li diffusion behaviors in micro-sized LiFePO 4 rod containing ~3% Li-Fe anti-site defects. We obtain direct evidence that Li ions can be intercalated through the (100)/(001) surfaces, contradicting a common belief that only the (010) surface of LiFePO 4 is electrochemically active. This study not only presents the first experimental confirmation of the previously hypothesized surface-reaction-limited (SRL) [6] phase boundary migration in LiFePO 4 , but also reveals a new hybrid mode of phase transformation, where the growth of new phase is controlled by surface reaction or Li diffusion in different crystallographic directions. Based on these findings, we propose the existence of three distinct kinetic regimes (SRL, hybrid, and bulk-diffusion-limited (BDL)) of phase transformations of LiFePO 4 and potentially many other intercalation compounds undergoing first-order phase transformations (as shown in Figure 1a). In particular, our phase-field simulations show that 2D Li diffusion can significantly enhance Li insertion kinetics in SRL regime. In a LiFePO 4 nanoparticle of 200 nm x 50 nm x L nm ([100] x [010] x [001]), our simulation results (Figure 1b) show that the traveling constant velocity of (100) straight phase boundary driven by 2D Li diffusion (D=1x10 -11 cm 2 /s along [100] and [010]) is one magnitude larger than the velocity of the phase boundary driven by 1D Li diffusion with infinite diffusivity along [010]. The latter one is calculated by SCB theory [6]. Anti-site defects are commonly believed to deteriorate high rate performances of LiFePO 4 , due to its blocking to the 1D Li diffusion along [010]. Our counterintuitive finding, however, show that the enhanced Li diffusion along [100] by Li inter-channel hopping around the defects [2, 3] significantly enhance surface reaction kinetics by activating large fraction of electrochemically surface for Li insertion. The maximum phase boundary velocity driven by 2D Li diffusion is linear to particle size along [100] and inversely linear to thickness along [010]. Therefore, we propose that LiFePO 4 nanosheets with large (010) surface and small thickness along [010] is beneficial for high rate capability and high energy density. This is consistent to experimental observations. Our studies show the important effects of anti-site defects on phase transformation kinetics and surface reaction kinetics in LiFePO 4 . This will provide new insights on potential avenues to improve performances of olivine electrodes via engineering anti-site defect formation and distribution. References: Amin, R.; Maier, J.; Balaya, P.; Chen, D. P.; Lin, C. T. Ionic and electronic transport in single crystalline LiFePO 4 grown by optical floating zone technique. Solid State Ionics 2008 , 179, 1683-1687. Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 2010 , 10, 4123-4127. Dathar, G. K. P.; Sheppard, D.; Stevenson, K. J.; Henkelman, G. Calculations of Li-ion diffusion in olivine phosphates. Chem. Mater. 2011 , 23, 4032–4037. Morgan, D.; Van der Ven, A.; Ceder, G. Li Conductivity in Li x MPO 4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 2004 , 7, A30. Nishimura, S.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M.; Yamada, A. Experimental visualization of lithium diffusion in Li x FePO 4 . Nature Mater. 2008 , 7, 707. Singh, G. K.; Ceder, G.; Bazant, M. Z. Intercalation dynamics in rechargeable battery materials: General theory and phase-transformation waves in LiFePO 4 . Electrochim. Acta 2008 , 53, 7599-7613. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
oleskarabach完成签到,获得积分20
2秒前
4秒前
5秒前
大气靳发布了新的文献求助10
6秒前
27完成签到,获得积分20
9秒前
露露发布了新的文献求助10
10秒前
Anlocia完成签到 ,获得积分10
12秒前
斯文败类应助shinn采纳,获得10
12秒前
不吃菠萝蜜完成签到 ,获得积分10
12秒前
HuLL完成签到 ,获得积分10
13秒前
19秒前
大模型应助大气靳采纳,获得10
19秒前
大学生完成签到 ,获得积分10
21秒前
21秒前
跳跃小伙完成签到 ,获得积分10
22秒前
风之子完成签到,获得积分10
22秒前
77完成签到 ,获得积分10
23秒前
无名子完成签到 ,获得积分10
23秒前
慢慢来完成签到 ,获得积分20
25秒前
26秒前
大气靳完成签到,获得积分10
27秒前
TT工作好认真完成签到 ,获得积分10
28秒前
30秒前
jintian完成签到 ,获得积分10
33秒前
Aeeeeeeon完成签到 ,获得积分10
33秒前
shinn发布了新的文献求助10
35秒前
36秒前
慢慢来发布了新的文献求助10
37秒前
李爱国应助wczkzzyfxh采纳,获得10
37秒前
38秒前
miku完成签到 ,获得积分10
38秒前
shinn发布了新的文献求助10
41秒前
阿斯蒂和琴酒完成签到 ,获得积分10
42秒前
贺六浑发布了新的文献求助20
43秒前
Ava应助111采纳,获得30
45秒前
步步完成签到 ,获得积分10
46秒前
852应助科研通管家采纳,获得10
47秒前
51秒前
优雅枫叶完成签到 ,获得积分20
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681075
求助须知:如何正确求助?哪些是违规求助? 5003997
关于积分的说明 15174789
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594411
邀请新用户注册赠送积分活动 1547531
关于科研通互助平台的介绍 1505468