血管紧张素II
血管收缩
内皮功能障碍
内科学
鞘氨醇激酶1
内分泌学
肠系膜动脉
转录组
医学
血管舒张
内皮
鞘氨醇
生物
1-磷酸鞘氨醇
动脉
血压
受体
基因表达
基因
生物化学
作者
Mateusz Siedliński,Ryszard Nosalski,Piotr Szczepaniak,Agnieszka H. Ludwig‐Słomczyńska,T. Mikołajczyk,Magdalena Filip,Grzegorz Osmenda,G. Wilk,Michał Nowak,Paweł Wołkow,Tomasz J. Guzik
摘要
Abstract Vascular dysfunction is an important phenomenon in hypertension. We hypothesized that angiotensin II (AngII) affects transcriptome in the vasculature in a region-specific manner, which may help to identify genes related to vascular dysfunction in AngII-induced hypertension. Mesenteric artery and aortic transcriptome was profiled using Illumina WG-6v2.0 chip in control and AngII infused (490 ng/kg/min) hypertensive mice. Gene set enrichment and leading edge analyses identified Sphingosine kinase 1 (Sphk1) in the highest number of pathways affected by AngII. Sphk1 mRNA, protein and activity were up-regulated in the hypertensive vasculature. Chronic sphingosine-1-phosphate (S1P) infusion resulted in a development of significantly increased vasoconstriction and endothelial dysfunction. AngII-induced hypertension was blunted in Sphk1 −/− mice (systolic BP 167 ± 4.2 vs. 180 ± 3.3 mmHg, p < 0.05), which was associated with decreased aortic and mesenteric vasoconstriction in hypertensive Sphk1 −/− mice. Pharmacological inhibition of S1P synthesis reduced vasoconstriction of mesenteric arteries. While Sphk1 is important in mediating vasoconstriction in hypertension, Sphk1 −/− mice were characterized by enhanced endothelial dysfunction, suggesting a local protective role of Sphk1 in the endothelium. S1P serum level in humans was correlated with endothelial function (arterial tonometry). Thus, vascular transcriptome analysis shows that S1P pathway is critical in the regulation of vascular function in AngII-induced hypertension, although Sphk1 may have opposing roles in the regulation of vasoconstriction and endothelium-dependent vasorelaxation.
科研通智能强力驱动
Strongly Powered by AbleSci AI