Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings

反褶积 盲反褶积 计算机科学 稳健性(进化) 维纳反褶积 算法 噪音(视频) 人工智能 生物化学 基因 图像(数学) 化学
作者
Yonghao Miao,Ming Zhao,Jing Lin,Xiaoqiang Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:27 (10): 105004-105004 被引量:81
标识
DOI:10.1088/0957-0233/27/10/105004
摘要

De-noising and enhancement of the weak fault signature from the noisy signal are crucial for fault diagnosis, as features are often very weak and masked by the background noise. Deconvolution methods have a significant advantage in counteracting the influence of the transmission path and enhancing the fault impulses. However, the performance of traditional deconvolution methods is greatly affected by some limitations, which restrict the application range. Therefore, this paper proposes a new deconvolution method, named sparse maximum harmonics-noise-ratio deconvolution (SMHD), that employs a novel index, the harmonics-to-noise ratio (HNR), to be the objective function for iteratively choosing the optimum filter coefficients to maximize HNR. SMHD is designed to enhance latent periodic impulse faults from heavy noise signals by calculating the HNR to estimate the period. A sparse factor is utilized to further suppress the noise and improve the signal-to-noise ratio of the filtered signal in every iteration step. In addition, the updating process of the sparse threshold value and the period guarantees the robustness of SMHD. On this basis, the new method not only overcomes the limitations associated with traditional deconvolution methods, minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD), but visual inspection is also better, even if the fault period is not provided in advance. Moreover, the efficiency of the proposed method is verified by simulations and bearing data from different test rigs. The results show that the proposed method is effective in the detection of various bearing faults compared with the original MED and MCKD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好数据发布了新的文献求助10
1秒前
火星上雨珍完成签到,获得积分10
1秒前
巴拉发布了新的文献求助10
2秒前
可爱的函函应助紫色的采纳,获得10
2秒前
wisdom发布了新的文献求助10
2秒前
李健的小迷弟应助宿舍采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
6秒前
英姑应助苏木采纳,获得10
6秒前
蓝胖子发布了新的文献求助20
6秒前
6秒前
wzl发布了新的文献求助10
7秒前
安详的冰棍完成签到,获得积分10
7秒前
归尘发布了新的文献求助10
7秒前
7秒前
小谢同学发布了新的文献求助10
8秒前
8秒前
8秒前
小蘑菇应助巴拉采纳,获得10
8秒前
笃定发布了新的文献求助10
9秒前
9秒前
9秒前
ding应助Hilda007采纳,获得10
10秒前
迷人绿茶发布了新的文献求助10
10秒前
10秒前
jzyyn发布了新的文献求助10
11秒前
11秒前
桐桐应助AI imaging采纳,获得30
12秒前
大黄豆完成签到,获得积分10
12秒前
13秒前
13秒前
99999sun发布了新的文献求助10
13秒前
xiaolei完成签到 ,获得积分10
14秒前
15秒前
16秒前
妥妥酱发布了新的文献求助10
16秒前
Foch发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005534
求助须知:如何正确求助?哪些是违规求助? 4249119
关于积分的说明 13239987
捐赠科研通 4048734
什么是DOI,文献DOI怎么找? 2215036
邀请新用户注册赠送积分活动 1224973
关于科研通互助平台的介绍 1145351