亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings

反褶积 盲反褶积 计算机科学 稳健性(进化) 维纳反褶积 算法 噪音(视频) 人工智能 生物化学 基因 图像(数学) 化学
作者
Yonghao Miao,Ming Zhao,Jing Lin,Xiaoqiang Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:27 (10): 105004-105004 被引量:81
标识
DOI:10.1088/0957-0233/27/10/105004
摘要

De-noising and enhancement of the weak fault signature from the noisy signal are crucial for fault diagnosis, as features are often very weak and masked by the background noise. Deconvolution methods have a significant advantage in counteracting the influence of the transmission path and enhancing the fault impulses. However, the performance of traditional deconvolution methods is greatly affected by some limitations, which restrict the application range. Therefore, this paper proposes a new deconvolution method, named sparse maximum harmonics-noise-ratio deconvolution (SMHD), that employs a novel index, the harmonics-to-noise ratio (HNR), to be the objective function for iteratively choosing the optimum filter coefficients to maximize HNR. SMHD is designed to enhance latent periodic impulse faults from heavy noise signals by calculating the HNR to estimate the period. A sparse factor is utilized to further suppress the noise and improve the signal-to-noise ratio of the filtered signal in every iteration step. In addition, the updating process of the sparse threshold value and the period guarantees the robustness of SMHD. On this basis, the new method not only overcomes the limitations associated with traditional deconvolution methods, minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD), but visual inspection is also better, even if the fault period is not provided in advance. Moreover, the efficiency of the proposed method is verified by simulations and bearing data from different test rigs. The results show that the proposed method is effective in the detection of various bearing faults compared with the original MED and MCKD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张起灵完成签到 ,获得积分10
55秒前
乐观的雁易完成签到 ,获得积分10
1分钟前
完美世界应助yun采纳,获得10
1分钟前
快乐小狗发布了新的文献求助10
3分钟前
斯文败类应助热心小松鼠采纳,获得10
4分钟前
李健应助热心小松鼠采纳,获得30
4分钟前
深情安青应助热心小松鼠采纳,获得10
4分钟前
香蕉觅云应助热心小松鼠采纳,获得10
4分钟前
领导范儿应助热心小松鼠采纳,获得10
4分钟前
Lucas应助热心小松鼠采纳,获得10
4分钟前
小蘑菇应助热心小松鼠采纳,获得10
4分钟前
小二郎应助热心小松鼠采纳,获得10
4分钟前
科研通AI2S应助热心小松鼠采纳,获得10
4分钟前
科研通AI2S应助热心小松鼠采纳,获得10
4分钟前
科研通AI2S应助热心小松鼠采纳,获得10
4分钟前
5分钟前
立邦芝士完成签到,获得积分10
6分钟前
6分钟前
yun发布了新的文献求助10
6分钟前
Anthocyanidin完成签到,获得积分10
6分钟前
肆肆完成签到,获得积分10
7分钟前
yun完成签到,获得积分10
8分钟前
bocky完成签到 ,获得积分10
8分钟前
星辰大海应助Yililusiours采纳,获得10
8分钟前
9分钟前
9分钟前
Yililusiours发布了新的文献求助10
9分钟前
丹妮完成签到 ,获得积分10
10分钟前
顾矜应助科研通管家采纳,获得10
11分钟前
乐乐应助科研通管家采纳,获得10
11分钟前
万能图书馆应助寻123采纳,获得10
12分钟前
12分钟前
寻123发布了新的文献求助10
12分钟前
寻123完成签到,获得积分10
12分钟前
12分钟前
Yililusiours完成签到,获得积分10
12分钟前
16分钟前
小哩笑笑发布了新的文献求助30
16分钟前
zyjsunye完成签到 ,获得积分0
16分钟前
丘比特应助科研通管家采纳,获得10
17分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268760
求助须知:如何正确求助?哪些是违规求助? 2908158
关于积分的说明 8344883
捐赠科研通 2578564
什么是DOI,文献DOI怎么找? 1402206
科研通“疑难数据库(出版商)”最低求助积分说明 655352
邀请新用户注册赠送积分活动 634490