催化作用
过渡金属
纳米技术
纳米结构
材料科学
燃料电池
氧还原反应
碳纤维
化学工程
限制
化学
氮气
氧还原
金属
氧气
电化学
有机化学
复合数
电极
工程类
冶金
物理化学
复合材料
机械工程
作者
Mengxia Shen,Changting Wei,Kelong Ai,Lehui Lu
出处
期刊:Nano Research
[Springer Science+Business Media]
日期:2017-01-18
卷期号:10 (5): 1449-1470
被引量:154
标识
DOI:10.1007/s12274-016-1400-7
摘要
Accelerating the rate-limiting oxygen reduction reaction (ORR) at the cathode remains the foremost issue for the commercialization of fuel cells. Transition metal–nitrogen–carbon (M–N/C, M = Fe, Co, etc.) nanostructures are the most promising class of non-precious metal catalysts (NPMCs) with satisfactory activities and stabilities in practical fuel cell applications. However, the long-debated nature of the active sites and the elusive structure-performance correlation impede further developments of M–N/C materials. In this review, we present recent endeavors to elucidate the actual structures of active sites by adopting a variety of physicochemical techniques that may provide a profound mechanistic understanding of M–N/C catalysts. Then, we focus on the spectacular progress in structural optimization strategies for M–N/C materials with tailored precursor architectures and modified synthetic routes for controlling the structural uniformity and maximizing the number of active sites in catalytic materials. The recognition of the right active centers and site-specific engineering of the nanostructures provides future directions for designing advantageous M–N/C catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI