清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel feature subspace selection method in random forests for high dimensional data

随机森林 子空间拓扑 特征选择 计算机科学 选择(遗传算法) 模式识别(心理学) 人工智能 特征(语言学) 随机子空间法 数据挖掘 语言学 哲学
作者
Yisen Wang,Shu‐Tao Xia
标识
DOI:10.1109/ijcnn.2016.7727772
摘要

Random forests are a class of ensemble methods for classification and regression with randomizing mechanism in bagging instances and selecting feature subspace. For high dimensional data, the performance of random forests degenerates because of the random sampling feature subspace for each node in the construction of decision trees. To address the issue, in this paper, we propose a new Principal Component Analysis and Stratified Sampling based method, called PCA-SS, for feature subspace selection in random forests with high dimensional data. For each decision tree in the forests, we firstly create the training data by bagging instances and partition the feature set into several feature subsets. Principal Component Analysis (PCA) is applied on each feature subset to obtain transformed features. All the principal components are retained in order to preserve the variability information of the data. Secondly, depending on a certain principal components principle, the transformed features are partitioned into informative and less informative parts. When constructing each node of decision trees, a feature subspace is selected by stratified sampling method from the two parts. The PCA-SS based Random Forests algorithm, named PSRF, ensures enough informative features for each tree node, and it also increases the diversity between the trees to a certain extent. Experimental results demonstrate that the proposed PSRF significantly improves the performance of random forests when dealing with high dimensional data, compared with the state-of-the-art random forests algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
123完成签到,获得积分20
10秒前
灿烂而孤独的八戒完成签到 ,获得积分10
31秒前
大脸猫4811发布了新的文献求助10
51秒前
胡国伦完成签到 ,获得积分10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
紫熊完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
heisa完成签到,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
凡舍完成签到 ,获得积分10
4分钟前
大医仁心完成签到 ,获得积分10
5分钟前
碗碗豆喵完成签到 ,获得积分10
5分钟前
Mason完成签到,获得积分10
5分钟前
辣小扬完成签到 ,获得积分10
5分钟前
白天亮完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
6分钟前
attention完成签到,获得积分10
6分钟前
Jasper应助lesliechan采纳,获得10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651112
求助须知:如何正确求助?哪些是违规求助? 4783297
关于积分的说明 15053122
捐赠科研通 4809844
什么是DOI,文献DOI怎么找? 2572683
邀请新用户注册赠送积分活动 1528665
关于科研通互助平台的介绍 1487687