A novel feature subspace selection method in random forests for high dimensional data

随机森林 子空间拓扑 特征选择 计算机科学 选择(遗传算法) 模式识别(心理学) 人工智能 特征(语言学) 随机子空间法 数据挖掘 语言学 哲学
作者
Yisen Wang,Shu‐Tao Xia
标识
DOI:10.1109/ijcnn.2016.7727772
摘要

Random forests are a class of ensemble methods for classification and regression with randomizing mechanism in bagging instances and selecting feature subspace. For high dimensional data, the performance of random forests degenerates because of the random sampling feature subspace for each node in the construction of decision trees. To address the issue, in this paper, we propose a new Principal Component Analysis and Stratified Sampling based method, called PCA-SS, for feature subspace selection in random forests with high dimensional data. For each decision tree in the forests, we firstly create the training data by bagging instances and partition the feature set into several feature subsets. Principal Component Analysis (PCA) is applied on each feature subset to obtain transformed features. All the principal components are retained in order to preserve the variability information of the data. Secondly, depending on a certain principal components principle, the transformed features are partitioned into informative and less informative parts. When constructing each node of decision trees, a feature subspace is selected by stratified sampling method from the two parts. The PCA-SS based Random Forests algorithm, named PSRF, ensures enough informative features for each tree node, and it also increases the diversity between the trees to a certain extent. Experimental results demonstrate that the proposed PSRF significantly improves the performance of random forests when dealing with high dimensional data, compared with the state-of-the-art random forests algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
王w发布了新的文献求助10
1秒前
yyyyy完成签到,获得积分10
2秒前
2秒前
大侠发布了新的文献求助10
2秒前
魁梧的乐天完成签到,获得积分20
2秒前
冯度翩翩完成签到,获得积分10
3秒前
科研通AI2S应助satchzhao采纳,获得10
3秒前
jijizz完成签到,获得积分10
4秒前
一一发布了新的文献求助10
4秒前
小马甲应助ChiDaiOLD采纳,获得10
4秒前
4秒前
鳗鱼灵寒发布了新的文献求助10
5秒前
shatang发布了新的文献求助10
5秒前
lesyeuxdexx完成签到 ,获得积分10
7秒前
8秒前
程琳完成签到,获得积分20
9秒前
10秒前
卓哥发布了新的文献求助10
10秒前
科研通AI5应助sansan采纳,获得10
11秒前
11秒前
11秒前
脑洞疼应助杰森斯坦虎采纳,获得10
11秒前
13秒前
14秒前
研友_QQC完成签到,获得积分10
14秒前
NeuroWhite完成签到,获得积分10
14秒前
14秒前
搜索v完成签到,获得积分10
15秒前
liuchuck完成签到 ,获得积分10
15秒前
15秒前
15秒前
猫独秀完成签到,获得积分10
15秒前
17秒前
buno应助yuefeng采纳,获得10
17秒前
yiming完成签到,获得积分10
17秒前
落落发布了新的文献求助10
18秒前
清秋若月完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808