亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel feature subspace selection method in random forests for high dimensional data

随机森林 子空间拓扑 特征选择 计算机科学 选择(遗传算法) 模式识别(心理学) 人工智能 特征(语言学) 随机子空间法 数据挖掘 语言学 哲学
作者
Yisen Wang,Shu‐Tao Xia
标识
DOI:10.1109/ijcnn.2016.7727772
摘要

Random forests are a class of ensemble methods for classification and regression with randomizing mechanism in bagging instances and selecting feature subspace. For high dimensional data, the performance of random forests degenerates because of the random sampling feature subspace for each node in the construction of decision trees. To address the issue, in this paper, we propose a new Principal Component Analysis and Stratified Sampling based method, called PCA-SS, for feature subspace selection in random forests with high dimensional data. For each decision tree in the forests, we firstly create the training data by bagging instances and partition the feature set into several feature subsets. Principal Component Analysis (PCA) is applied on each feature subset to obtain transformed features. All the principal components are retained in order to preserve the variability information of the data. Secondly, depending on a certain principal components principle, the transformed features are partitioned into informative and less informative parts. When constructing each node of decision trees, a feature subspace is selected by stratified sampling method from the two parts. The PCA-SS based Random Forests algorithm, named PSRF, ensures enough informative features for each tree node, and it also increases the diversity between the trees to a certain extent. Experimental results demonstrate that the proposed PSRF significantly improves the performance of random forests when dealing with high dimensional data, compared with the state-of-the-art random forests algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
39秒前
啊强完成签到 ,获得积分10
47秒前
浮游应助zqy采纳,获得10
1分钟前
要按期顺利毕业完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Fishchips发布了新的文献求助10
2分钟前
DYB完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助zqy采纳,获得10
3分钟前
浮游应助cc采纳,获得10
4分钟前
YZChen完成签到,获得积分10
4分钟前
4分钟前
zqy完成签到,获得积分20
4分钟前
优雅雨柏完成签到,获得积分10
4分钟前
月军完成签到 ,获得积分10
5分钟前
玩命的糖豆完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
乐乐应助新xin采纳,获得30
5分钟前
Zert发布了新的文献求助10
6分钟前
6分钟前
cc发布了新的文献求助10
6分钟前
cc完成签到,获得积分20
6分钟前
6分钟前
6分钟前
头孢西丁完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
一盏壶完成签到,获得积分10
8分钟前
8分钟前
8分钟前
新xin发布了新的文献求助30
8分钟前
CipherSage应助Zert采纳,获得10
8分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346473
求助须知:如何正确求助?哪些是违规求助? 4481054
关于积分的说明 13947175
捐赠科研通 4378871
什么是DOI,文献DOI怎么找? 2406077
邀请新用户注册赠送积分活动 1398680
关于科研通互助平台的介绍 1371411