Chemometric approach to estimate kinetic properties of paclitaxel prodrugs and their substructures for solubility prediction through molecular modelling and simulation studies

数量结构-活动关系 取代基 分子描述符 化学 溶解度 紫杉醇 前药 计算化学 生物系统 立体化学 有机化学 生物化学 医学 生物 外科 化疗
作者
Nupur S. Munjal,Rohit Shukla,Tiratha Raj Singh
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:33 (11) 被引量:2
标识
DOI:10.1002/cem.3181
摘要

Abstract Paclitaxel drug is administered in the treatment of ovarian and breast cancer and also in Kaposi sarcoma. In spite of being nanomolar active, use of this drug is confined because of its low aqueous solubility, hence many prodrugs for increasing paclitaxel's solubility were formed, but the formation process was not rational. In the current study, quantitative structure property relationship (QSPR) models were formed for the solubility prediction of paclitaxel prodrugs. Structures of all molecules were optimized at the parameterization method 6 (PM6) and Austin Model 1 (AM1) levels, after which Dragon‐based 5250 descriptors and quasi‐mixture descriptors were calculated. Independent descriptors were selected in multiple steps, and QSPR models having 12 and 10 descriptors with R 2 and Q 2 values of 0.78 and 0.60 and 0.80 and 0.69 for AM1‐ and PM6‐optimized geometry datasets, respectively, were formed. Also, for substituent group dataset, QSPR models with 8 and 9 descriptors having R 2 and Q 2 values of 0.82 and 0.76 and 0.93 and 0.83 were determined for AM1‐ and PM6‐optimized geometry datasets, respectively. Quasi‐mixture descriptors, which were calculated for substituent group datasets, gave the QSPR model with R 2 and Q 2 values of 0.70 and 0.58 and 0.69 and 0.52 respectively for AM1‐ and PM6‐optimized geometries. After the models' development, the substituent group dataset was employed for the formation of docking and molecular dynamics simulation–based models for the metabolic study with CYP1A2 enzyme. It is anticipated that the proposed QSPR models will serve as a base for the designing of new paclitaxel prodrugs with improved aqueous solubility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小趴菜完成签到 ,获得积分10
2秒前
科研通AI2S应助ZHUHONGYAO采纳,获得10
3秒前
Yu完成签到,获得积分10
3秒前
泌尿邓完成签到,获得积分10
3秒前
可爱的函函应助显隐采纳,获得10
6秒前
6秒前
梧桐的灯完成签到 ,获得积分10
7秒前
9秒前
聪明怜阳完成签到,获得积分10
9秒前
暴躁的豆芽完成签到,获得积分10
11秒前
梁云完成签到,获得积分10
11秒前
谷捣猫宁发布了新的文献求助10
11秒前
12秒前
地塞米松磷酸钠完成签到,获得积分10
13秒前
huluwa发布了新的文献求助150
13秒前
大佬应助文武兼备采纳,获得10
13秒前
15秒前
牛阳光发布了新的文献求助10
15秒前
Yao完成签到,获得积分20
16秒前
17秒前
18秒前
非要叫我起个昵称完成签到,获得积分10
18秒前
strive完成签到,获得积分10
18秒前
Orange应助zaozao采纳,获得10
19秒前
20秒前
21秒前
21秒前
竹筏过海应助拾光采纳,获得30
22秒前
22秒前
张瑞雪完成签到 ,获得积分10
22秒前
打打应助显隐采纳,获得10
23秒前
华仔应助万松采纳,获得10
23秒前
怡崽发布了新的文献求助10
24秒前
ajun发布了新的文献求助10
24秒前
LHP完成签到,获得积分10
25秒前
HangY发布了新的文献求助20
27秒前
28秒前
踏实的便当完成签到,获得积分20
28秒前
认真乐双完成签到,获得积分10
28秒前
汪洋浮萍一道开完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461317
求助须知:如何正确求助?哪些是违规求助? 3055029
关于积分的说明 9046143
捐赠科研通 2744961
什么是DOI,文献DOI怎么找? 1505775
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264