Automatic visual defects inspection of wind turbine blades via YOLO-based small object detection approach

计算机科学 人工智能 卷积神经网络 目标检测 稳健性(进化) 计算机视觉 涡轮机 机器视觉 深度学习 可靠性(半导体) 特征提取 模式识别(心理学) 工程类 量子力学 机械工程 生物化学 基因 物理 功率(物理) 化学
作者
Zifeng Qiu,Shuangxin Wang,Zeng Zhao-xi,Dingli Yu
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:28 (04): 1-1 被引量:39
标识
DOI:10.1117/1.jei.28.4.043023
摘要

Regular inspection of wind turbine blades (WTBs), especially the detection of tiny defects, is necessary to maintain safe operation of wind turbine systems. However, current detections are inefficient and subjective because they are conducted merely by human inspectors. An autonomous visual inspection system is proposed in this paper for WTBs, in which a deep learning framework is developed by combining the convolutional neural network (CNN) and the you only look once (YOLO) model. To achieve practically acceptable detection accuracy for small-sized defects on the WTBs, a YOLO-based small object detection approach (YSODA) using a multiscale feature pyramid is proposed by amalgamating features of more layers. To evaluate the proposed YSODA, a database including 23,807 images labeled for three types of defect—crack, oil pollution, and sand inclusion, is developed. Then, the YSODA is with its architecture modified, and is trained, validated, and tested using the images from the database to provide autonomous and accurate visual inspection. After training and testing, resulting detection accuracy reaches 92.7%, 90.7%, and 90.3% for the three types of defect with the average accuracy being 91.3%. The robustness of the trained YSODA is demonstrated and verified in detecting small-sized defects. It is also compared with that of the traditional CNN-based and machine learning methods by applying to a real WTB system, which proved that the proposed YSODA is superior to existing approaches in terms of detection accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助不败皇族461X采纳,获得10
刚刚
复杂尔蓝发布了新的文献求助10
1秒前
diyisudu完成签到 ,获得积分10
1秒前
邓谷云完成签到,获得积分10
2秒前
单身的钧完成签到,获得积分10
2秒前
zhikaiyici完成签到,获得积分10
2秒前
牟翎完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
wangly发布了新的文献求助10
3秒前
无奈白竹完成签到,获得积分10
3秒前
manholeFixerXM完成签到 ,获得积分10
3秒前
LC应助菠菜采纳,获得50
3秒前
ZACK完成签到 ,获得积分10
3秒前
4秒前
MM完成签到,获得积分10
4秒前
稀里糊涂蛋完成签到,获得积分10
4秒前
4秒前
xiaxia42完成签到 ,获得积分10
4秒前
昆仑山吴某完成签到 ,获得积分10
4秒前
月亮完成签到,获得积分20
4秒前
整齐路灯完成签到,获得积分10
5秒前
iNk应助开朗向真采纳,获得10
5秒前
孟德尔吃豌豆完成签到,获得积分10
6秒前
哈哈哈哈完成签到 ,获得积分10
6秒前
耍酷芙蓉完成签到,获得积分10
6秒前
6秒前
柚子皮完成签到,获得积分10
6秒前
6秒前
larry完成签到,获得积分10
7秒前
7秒前
gulugulu发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
初之发布了新的文献求助10
8秒前
8秒前
研友_ZbKr48完成签到,获得积分10
8秒前
lqq的一家之主完成签到,获得积分10
9秒前
迷路又菱发布了新的文献求助10
9秒前
yufeng完成签到 ,获得积分10
9秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167416
求助须知:如何正确求助?哪些是违规求助? 2818928
关于积分的说明 7923662
捐赠科研通 2478740
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443