Automatic visual defects inspection of wind turbine blades via YOLO-based small object detection approach

计算机科学 人工智能 卷积神经网络 目标检测 稳健性(进化) 计算机视觉 涡轮机 机器视觉 深度学习 可靠性(半导体) 特征提取 模式识别(心理学) 工程类 机械工程 生物化学 化学 功率(物理) 物理 量子力学 基因
作者
Zifeng Qiu,Shuangxin Wang,Zeng Zhao-xi,Dingli Yu
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:28 (04): 1-1 被引量:39
标识
DOI:10.1117/1.jei.28.4.043023
摘要

Regular inspection of wind turbine blades (WTBs), especially the detection of tiny defects, is necessary to maintain safe operation of wind turbine systems. However, current detections are inefficient and subjective because they are conducted merely by human inspectors. An autonomous visual inspection system is proposed in this paper for WTBs, in which a deep learning framework is developed by combining the convolutional neural network (CNN) and the you only look once (YOLO) model. To achieve practically acceptable detection accuracy for small-sized defects on the WTBs, a YOLO-based small object detection approach (YSODA) using a multiscale feature pyramid is proposed by amalgamating features of more layers. To evaluate the proposed YSODA, a database including 23,807 images labeled for three types of defect—crack, oil pollution, and sand inclusion, is developed. Then, the YSODA is with its architecture modified, and is trained, validated, and tested using the images from the database to provide autonomous and accurate visual inspection. After training and testing, resulting detection accuracy reaches 92.7%, 90.7%, and 90.3% for the three types of defect with the average accuracy being 91.3%. The robustness of the trained YSODA is demonstrated and verified in detecting small-sized defects. It is also compared with that of the traditional CNN-based and machine learning methods by applying to a real WTB system, which proved that the proposed YSODA is superior to existing approaches in terms of detection accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
22鱼完成签到,获得积分10
1秒前
aafrr完成签到 ,获得积分10
1秒前
芝士的酒完成签到,获得积分10
2秒前
2秒前
九城完成签到,获得积分10
2秒前
2秒前
4秒前
司徒文青应助Mid采纳,获得30
4秒前
华仔应助李秋静采纳,获得10
4秒前
buno应助大脸妹采纳,获得10
4秒前
Owen应助喵酱采纳,获得30
4秒前
胖豆发布了新的文献求助10
4秒前
今后应助科研小白菜采纳,获得10
5秒前
orixero应助欢呼的明雪采纳,获得10
5秒前
6秒前
my完成签到 ,获得积分10
7秒前
duxinyue完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI5应助斯文芷荷采纳,获得10
8秒前
9秒前
2鱼发布了新的文献求助10
10秒前
SYLH应助畅快的谷梦采纳,获得10
11秒前
mingjie发布了新的文献求助10
11秒前
Akim应助克里斯就是逊啦采纳,获得10
11秒前
越幸运完成签到 ,获得积分10
12秒前
young完成签到 ,获得积分10
12秒前
天天快乐应助成就的烧鹅采纳,获得10
13秒前
cora发布了新的文献求助10
13秒前
诚心的不斜完成签到,获得积分10
14秒前
bono完成签到 ,获得积分10
14秒前
14秒前
15秒前
又要起名字关注了科研通微信公众号
16秒前
可爱的函函应助su采纳,获得10
16秒前
17秒前
澳澳完成签到,获得积分10
18秒前
18秒前
善学以致用应助纯真抽屉采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794