已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recurrent Saliency Transformation Network for Tiny Target Segmentation in Abdominal CT Scans

分割 人工智能 计算机科学 转化(遗传学) 计算机视觉 图像分割 模式识别(心理学) 过程(计算) 阶段(地层学) 生物 生物化学 基因 操作系统 古生物学
作者
Lingxi Xie,Qihang Yu,Yuyin Zhou,Yan Wang,Elliot K. Fishman,Alan Yuille
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 514-525 被引量:59
标识
DOI:10.1109/tmi.2019.2930679
摘要

We aim at segmenting a wide variety of organs, including tiny targets (e.g., adrenal gland), and neoplasms (e.g., pancreatic cyst), from abdominal CT scans. This is a challenging task in two aspects. First, some organs (e.g., the pancreas), are highly variable in both anatomy and geometry, and thus very difficult to depict. Second, the neoplasms often vary a lot in its size, shape, as well as its location within the organ. Third, the targets (organs and neoplasms) can be considerably small compared to the human body, and so standard deep networks for segmentation are often less sensitive to these targets and thus predict less accurately especially around their boundaries. In this paper, we present an end-to-end framework named recurrent saliency transformation network (RSTN) for segmenting tiny and/or variable targets. The RSTN is a coarse-to-fine approach that uses prediction from the first (coarse) stage to shrink the input region for the second (fine) stage. A saliency transformation module is inserted between these two stages so that 1) the coarse-scaled segmentation mask can be transferred as spatial weights and applied to the fine stage and 2) the gradients can be back-propagated from the loss layer to the entire network so that the two stages are optimized in a joint manner. In the testing stage, we perform segmentation iteratively to improve accuracy. In this extended journal paper, we allow a gradual optimization to improve the stability of the RSTN, and introduce a hierarchical version named H-RSTN to segment tiny and variable neoplasms such as pancreatic cysts. Experiments are performed on several CT datasets including a public pancreas segmentation dataset, our own multi-organ dataset, and a cystic pancreas dataset. In all these cases, the RSTN outperforms the baseline (a stage-wise coarse-to-fine approach) significantly. Confirmed by the radiologists in our team, these promising segmentation results can help early diagnosis of pancreatic cancer. The code and pre-trained models of our project were made available at https://github.com/198808xc/OrganSegRSTN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盐植物完成签到,获得积分10
1秒前
王木木完成签到 ,获得积分10
1秒前
康康完成签到 ,获得积分10
1秒前
三月完成签到,获得积分10
1秒前
少年锦时完成签到,获得积分10
4秒前
4秒前
彭于晏应助贾靖涵采纳,获得30
6秒前
6秒前
徐嘎嘎发布了新的文献求助10
6秒前
zhaoqing发布了新的文献求助10
7秒前
咕噜发布了新的文献求助10
8秒前
相金鹏完成签到,获得积分10
8秒前
狗十七完成签到 ,获得积分10
9秒前
白英完成签到,获得积分10
10秒前
wsw111发布了新的文献求助30
11秒前
chenllxx完成签到 ,获得积分10
12秒前
左江夜渔人完成签到 ,获得积分10
13秒前
13秒前
哈哈完成签到,获得积分10
13秒前
相金鹏发布了新的文献求助10
14秒前
xie完成签到 ,获得积分0
15秒前
一只眠羊完成签到 ,获得积分10
16秒前
17秒前
bajiu完成签到 ,获得积分10
17秒前
TiAmo完成签到,获得积分10
18秒前
哈哈发布了新的文献求助10
18秒前
灶灶完成签到 ,获得积分10
18秒前
LXL完成签到,获得积分10
21秒前
刘振坤完成签到,获得积分10
21秒前
LFYL发布了新的文献求助10
21秒前
英姑应助Alan采纳,获得10
21秒前
感性的俊驰完成签到 ,获得积分10
22秒前
will完成签到,获得积分10
24秒前
2R完成签到,获得积分10
26秒前
华仔应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
大个应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004