Recurrent Saliency Transformation Network for Tiny Target Segmentation in Abdominal CT Scans

分割 人工智能 计算机科学 转化(遗传学) 计算机视觉 图像分割 模式识别(心理学) 过程(计算) 阶段(地层学) 生物 生物化学 基因 操作系统 古生物学
作者
Lingxi Xie,Qihang Yu,Yuyin Zhou,Yan Wang,Elliot K. Fishman,Alan Yuille
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 514-525 被引量:59
标识
DOI:10.1109/tmi.2019.2930679
摘要

We aim at segmenting a wide variety of organs, including tiny targets (e.g., adrenal gland), and neoplasms (e.g., pancreatic cyst), from abdominal CT scans. This is a challenging task in two aspects. First, some organs (e.g., the pancreas), are highly variable in both anatomy and geometry, and thus very difficult to depict. Second, the neoplasms often vary a lot in its size, shape, as well as its location within the organ. Third, the targets (organs and neoplasms) can be considerably small compared to the human body, and so standard deep networks for segmentation are often less sensitive to these targets and thus predict less accurately especially around their boundaries. In this paper, we present an end-to-end framework named recurrent saliency transformation network (RSTN) for segmenting tiny and/or variable targets. The RSTN is a coarse-to-fine approach that uses prediction from the first (coarse) stage to shrink the input region for the second (fine) stage. A saliency transformation module is inserted between these two stages so that 1) the coarse-scaled segmentation mask can be transferred as spatial weights and applied to the fine stage and 2) the gradients can be back-propagated from the loss layer to the entire network so that the two stages are optimized in a joint manner. In the testing stage, we perform segmentation iteratively to improve accuracy. In this extended journal paper, we allow a gradual optimization to improve the stability of the RSTN, and introduce a hierarchical version named H-RSTN to segment tiny and variable neoplasms such as pancreatic cysts. Experiments are performed on several CT datasets including a public pancreas segmentation dataset, our own multi-organ dataset, and a cystic pancreas dataset. In all these cases, the RSTN outperforms the baseline (a stage-wise coarse-to-fine approach) significantly. Confirmed by the radiologists in our team, these promising segmentation results can help early diagnosis of pancreatic cancer. The code and pre-trained models of our project were made available at https://github.com/198808xc/OrganSegRSTN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨山芙发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Livrik完成签到,获得积分10
6秒前
小猴子关注了科研通微信公众号
6秒前
阿Q完成签到,获得积分10
7秒前
yujd完成签到,获得积分10
7秒前
鹿仪发布了新的文献求助10
7秒前
7秒前
7秒前
Orange应助好宝宝采纳,获得10
9秒前
9秒前
GL发布了新的文献求助10
10秒前
10秒前
李健应助年轻的烨华采纳,获得10
12秒前
Jasper应助zhugepengju采纳,获得10
12秒前
13秒前
酢浆草小熊完成签到 ,获得积分10
13秒前
沈昊泽完成签到,获得积分10
16秒前
陈浩发布了新的文献求助10
16秒前
17秒前
春眠不觉小小酥完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
wwb完成签到,获得积分10
20秒前
在水一方应助meimale采纳,获得10
21秒前
星晴遇见花海完成签到 ,获得积分10
22秒前
22秒前
22秒前
赘婿应助lize5493采纳,获得10
23秒前
24秒前
JamesPei应助liu采纳,获得10
24秒前
冇_发布了新的文献求助10
25秒前
李爱国应助黑猫采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035