Recurrent Saliency Transformation Network for Tiny Target Segmentation in Abdominal CT Scans

分割 人工智能 计算机科学 转化(遗传学) 计算机视觉 图像分割 模式识别(心理学) 过程(计算) 阶段(地层学) 生物 生物化学 基因 操作系统 古生物学
作者
Lingxi Xie,Qihang Yu,Yuyin Zhou,Yan Wang,Elliot K. Fishman,Alan Yuille
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 514-525 被引量:59
标识
DOI:10.1109/tmi.2019.2930679
摘要

We aim at segmenting a wide variety of organs, including tiny targets (e.g., adrenal gland), and neoplasms (e.g., pancreatic cyst), from abdominal CT scans. This is a challenging task in two aspects. First, some organs (e.g., the pancreas), are highly variable in both anatomy and geometry, and thus very difficult to depict. Second, the neoplasms often vary a lot in its size, shape, as well as its location within the organ. Third, the targets (organs and neoplasms) can be considerably small compared to the human body, and so standard deep networks for segmentation are often less sensitive to these targets and thus predict less accurately especially around their boundaries. In this paper, we present an end-to-end framework named recurrent saliency transformation network (RSTN) for segmenting tiny and/or variable targets. The RSTN is a coarse-to-fine approach that uses prediction from the first (coarse) stage to shrink the input region for the second (fine) stage. A saliency transformation module is inserted between these two stages so that 1) the coarse-scaled segmentation mask can be transferred as spatial weights and applied to the fine stage and 2) the gradients can be back-propagated from the loss layer to the entire network so that the two stages are optimized in a joint manner. In the testing stage, we perform segmentation iteratively to improve accuracy. In this extended journal paper, we allow a gradual optimization to improve the stability of the RSTN, and introduce a hierarchical version named H-RSTN to segment tiny and variable neoplasms such as pancreatic cysts. Experiments are performed on several CT datasets including a public pancreas segmentation dataset, our own multi-organ dataset, and a cystic pancreas dataset. In all these cases, the RSTN outperforms the baseline (a stage-wise coarse-to-fine approach) significantly. Confirmed by the radiologists in our team, these promising segmentation results can help early diagnosis of pancreatic cancer. The code and pre-trained models of our project were made available at https://github.com/198808xc/OrganSegRSTN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助actor2006采纳,获得10
刚刚
刚刚
刚刚
刚刚
wtldkz发布了新的文献求助10
1秒前
zhoutian发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
zhou_完成签到,获得积分10
2秒前
科研通AI6应助朴实曼岚采纳,获得10
2秒前
领导范儿应助汀汀采纳,获得10
2秒前
此木本去一应助tomato采纳,获得10
2秒前
3秒前
所所应助Shinchan采纳,获得10
3秒前
BDH完成签到,获得积分20
4秒前
香菜头发布了新的文献求助10
4秒前
林珍发布了新的文献求助10
4秒前
SQDHZJ发布了新的文献求助10
5秒前
GG波波发布了新的文献求助10
7秒前
吴筮发布了新的文献求助10
7秒前
深情安青应助姜萌萌采纳,获得10
8秒前
niumi190完成签到,获得积分0
9秒前
11231发布了新的文献求助10
9秒前
斯文败类应助平淡夏云采纳,获得10
10秒前
gz发布了新的文献求助10
10秒前
11秒前
科研通AI6应助Shinchan采纳,获得10
11秒前
牛牛最棒完成签到 ,获得积分10
11秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
小蘑菇应助wtldkz采纳,获得10
15秒前
默默的妙竹完成签到 ,获得积分10
15秒前
裴果发布了新的文献求助10
16秒前
Paul111发布了新的文献求助10
17秒前
18秒前
Jes发布了新的文献求助30
18秒前
20秒前
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715