Recurrent Saliency Transformation Network for Tiny Target Segmentation in Abdominal CT Scans

分割 人工智能 计算机科学 转化(遗传学) 计算机视觉 图像分割 模式识别(心理学) 过程(计算) 阶段(地层学) 生物 生物化学 基因 操作系统 古生物学
作者
Lingxi Xie,Qihang Yu,Yuyin Zhou,Yan Wang,Elliot K. Fishman,Alan Yuille
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 514-525 被引量:59
标识
DOI:10.1109/tmi.2019.2930679
摘要

We aim at segmenting a wide variety of organs, including tiny targets (e.g., adrenal gland), and neoplasms (e.g., pancreatic cyst), from abdominal CT scans. This is a challenging task in two aspects. First, some organs (e.g., the pancreas), are highly variable in both anatomy and geometry, and thus very difficult to depict. Second, the neoplasms often vary a lot in its size, shape, as well as its location within the organ. Third, the targets (organs and neoplasms) can be considerably small compared to the human body, and so standard deep networks for segmentation are often less sensitive to these targets and thus predict less accurately especially around their boundaries. In this paper, we present an end-to-end framework named recurrent saliency transformation network (RSTN) for segmenting tiny and/or variable targets. The RSTN is a coarse-to-fine approach that uses prediction from the first (coarse) stage to shrink the input region for the second (fine) stage. A saliency transformation module is inserted between these two stages so that 1) the coarse-scaled segmentation mask can be transferred as spatial weights and applied to the fine stage and 2) the gradients can be back-propagated from the loss layer to the entire network so that the two stages are optimized in a joint manner. In the testing stage, we perform segmentation iteratively to improve accuracy. In this extended journal paper, we allow a gradual optimization to improve the stability of the RSTN, and introduce a hierarchical version named H-RSTN to segment tiny and variable neoplasms such as pancreatic cysts. Experiments are performed on several CT datasets including a public pancreas segmentation dataset, our own multi-organ dataset, and a cystic pancreas dataset. In all these cases, the RSTN outperforms the baseline (a stage-wise coarse-to-fine approach) significantly. Confirmed by the radiologists in our team, these promising segmentation results can help early diagnosis of pancreatic cancer. The code and pre-trained models of our project were made available at https://github.com/198808xc/OrganSegRSTN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jerry完成签到,获得积分10
1秒前
MrLiu完成签到,获得积分10
2秒前
冷傲博完成签到,获得积分10
2秒前
jeff完成签到,获得积分10
2秒前
LHZ完成签到,获得积分10
2秒前
所所应助时尚俊驰采纳,获得10
3秒前
影子芳香完成签到 ,获得积分10
4秒前
5秒前
5秒前
不必要再讨论适合与否完成签到,获得积分0
6秒前
无情夏寒完成签到 ,获得积分10
7秒前
慕青应助马士全采纳,获得10
8秒前
xuzj应助科研通管家采纳,获得10
8秒前
Rubby应助科研通管家采纳,获得30
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
shiizii应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
ludong_0应助科研通管家采纳,获得10
9秒前
YeeYee发布了新的文献求助10
9秒前
冷酷的松思完成签到,获得积分10
9秒前
zgt01发布了新的文献求助10
10秒前
zhang完成签到,获得积分10
10秒前
江中完成签到 ,获得积分10
12秒前
12秒前
阿玖完成签到 ,获得积分10
13秒前
jiaolulu发布了新的文献求助10
15秒前
踏雪飞鸿完成签到,获得积分10
16秒前
hannah完成签到,获得积分10
16秒前
songvv发布了新的文献求助10
17秒前
一一一应助Bin_Liu采纳,获得10
18秒前
麻果完成签到,获得积分10
20秒前
OER完成签到,获得积分10
20秒前
伦语完成签到,获得积分20
20秒前
中陆完成签到,获得积分10
21秒前
22秒前
莫西莫西完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022