Recurrent Saliency Transformation Network for Tiny Target Segmentation in Abdominal CT Scans

分割 人工智能 计算机科学 转化(遗传学) 计算机视觉 图像分割 模式识别(心理学) 过程(计算) 阶段(地层学) 生物 生物化学 基因 操作系统 古生物学
作者
Lingxi Xie,Qihang Yu,Yuyin Zhou,Yan Wang,Elliot K. Fishman,Alan Yuille
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 514-525 被引量:59
标识
DOI:10.1109/tmi.2019.2930679
摘要

We aim at segmenting a wide variety of organs, including tiny targets (e.g., adrenal gland), and neoplasms (e.g., pancreatic cyst), from abdominal CT scans. This is a challenging task in two aspects. First, some organs (e.g., the pancreas), are highly variable in both anatomy and geometry, and thus very difficult to depict. Second, the neoplasms often vary a lot in its size, shape, as well as its location within the organ. Third, the targets (organs and neoplasms) can be considerably small compared to the human body, and so standard deep networks for segmentation are often less sensitive to these targets and thus predict less accurately especially around their boundaries. In this paper, we present an end-to-end framework named recurrent saliency transformation network (RSTN) for segmenting tiny and/or variable targets. The RSTN is a coarse-to-fine approach that uses prediction from the first (coarse) stage to shrink the input region for the second (fine) stage. A saliency transformation module is inserted between these two stages so that 1) the coarse-scaled segmentation mask can be transferred as spatial weights and applied to the fine stage and 2) the gradients can be back-propagated from the loss layer to the entire network so that the two stages are optimized in a joint manner. In the testing stage, we perform segmentation iteratively to improve accuracy. In this extended journal paper, we allow a gradual optimization to improve the stability of the RSTN, and introduce a hierarchical version named H-RSTN to segment tiny and variable neoplasms such as pancreatic cysts. Experiments are performed on several CT datasets including a public pancreas segmentation dataset, our own multi-organ dataset, and a cystic pancreas dataset. In all these cases, the RSTN outperforms the baseline (a stage-wise coarse-to-fine approach) significantly. Confirmed by the radiologists in our team, these promising segmentation results can help early diagnosis of pancreatic cancer. The code and pre-trained models of our project were made available at https://github.com/198808xc/OrganSegRSTN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刘立凡完成签到,获得积分10
刚刚
寒冷乐驹完成签到,获得积分10
刚刚
轩1发布了新的文献求助10
1秒前
1秒前
大模型应助蓝血之人采纳,获得10
1秒前
崔同学完成签到,获得积分10
1秒前
1秒前
1秒前
大傻春完成签到 ,获得积分10
2秒前
bkagyin应助gyt采纳,获得10
2秒前
3秒前
3秒前
小二郎应助迅速友容采纳,获得30
4秒前
flyfish完成签到,获得积分10
5秒前
开朗芸发布了新的文献求助10
5秒前
李爱国应助冰棠采纳,获得10
5秒前
原味鸡发布了新的文献求助10
5秒前
金容完成签到,获得积分10
5秒前
刻苦翠丝发布了新的文献求助10
6秒前
6秒前
WF发布了新的文献求助10
6秒前
6秒前
7秒前
大模型应助1+1采纳,获得10
7秒前
Owen应助abby采纳,获得30
7秒前
危机的酒窝完成签到,获得积分10
7秒前
平常冬天发布了新的文献求助10
8秒前
无奈以南完成签到 ,获得积分10
8秒前
iNk应助Yuciyy采纳,获得10
8秒前
faks完成签到,获得积分10
9秒前
水悟子完成签到,获得积分10
9秒前
9秒前
锌离子电池完成签到,获得积分10
10秒前
10秒前
tfldog完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155426
求助须知:如何正确求助?哪些是违规求助? 2806513
关于积分的说明 7869622
捐赠科研通 2464807
什么是DOI,文献DOI怎么找? 1311979
科研通“疑难数据库(出版商)”最低求助积分说明 629783
版权声明 601880