噪音(视频)
计算机科学
高斯噪声
人工神经网络
信号(编程语言)
航程(航空)
人工智能
噪声测量
直线(几何图形)
算法
高斯分布
机器学习
模式识别(心理学)
数学
降噪
物理
工程类
几何学
程序设计语言
航空航天工程
图像(数学)
量子力学
作者
Gautier Izacard,Brett Bernstein,Carlos Fernandez‐Granda
标识
DOI:10.1109/icassp.2019.8682882
摘要
We propose a learning-based approach for estimating the spectrum of a multisinusoidal signal from a finite number of samples. A neural-network is trained to approximate the spectra of such signals on simulated data. The proposed methodology is very flexible: adapting to different signal and noise models only requires modifying the training data accordingly. Numerical experiments show that the approach performs competitively with classical methods designed for additive Gaussian noise at a range of noise levels, and is also effective in the presence of impulsive noise.
科研通智能强力驱动
Strongly Powered by AbleSci AI