Analysis of Abdominal Computed Tomography Images for Automatic Liver Cancer Diagnosis Using Image Processing Algorithm

图像处理 腹部计算机断层扫描 放射科 医学 人工智能 计算机断层摄影术 计算机科学 断层摄影术 核医学 算法 图像(数学) 计算机视觉
作者
Ayesha Adil Khan,Ghous Bakhsh Narejo
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:15 (10): 972-982 被引量:14
标识
DOI:10.2174/1573405615666190716122040
摘要

Background: The application of image processing algorithms for medical image analysis has been found effectual in the past years. Imaging techniques provide assistance to the radiologists and physicians for the diagnosis of abnormalities in different organs. Objective: The proposed algorithm is designed for automatic computer-aided diagnosis of liver cancer from low contrast CT images. The idea expressed in this article is to classify the malignancy of the liver tumor ahead of liver segmentation and to locate HCC burden on the liver. Methods: A novel Fuzzy Linguistic Constant (FLC) is designed for image enhancement. To classify the enhanced liver image as cancerous or non-cancerous, fuzzy membership function is applied. The extracted features are assessed for malignancy and benignancy using the structural similarity index. The malignant CT image is further processed for automatic tumor segmentation and grading by applying morphological image processing techniques. Results: The validity of the concept is verified on a dataset of 179 clinical cases which consist of 98 benign and 81 malignant liver tumors. Classification accuracy of 98.3% is achieved by Support Vector Machine (SVM). The proposed method has the ability to automatically segment the tumor with an improved detection rate of 78% and a precision value of 0.6. Conclusion: The algorithm design offers an efficient tool to the radiologist in classifying the malignant cases from benign cases. The CAD system allows automatic segmentation of tumor and locates tumor burden on the liver. The methodology adopted can aid medical practitioners in tumor diagnosis and surgery planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助YWang采纳,获得10
1秒前
啦啦啦完成签到,获得积分10
1秒前
yunjian1583完成签到,获得积分10
2秒前
3秒前
早起完成签到,获得积分10
3秒前
九七发布了新的文献求助10
4秒前
清钰发布了新的文献求助10
4秒前
Guoshibo完成签到,获得积分10
5秒前
大模型应助wx采纳,获得10
5秒前
iNk应助YOLO采纳,获得20
6秒前
luo完成签到,获得积分10
6秒前
Earnestlee完成签到,获得积分10
6秒前
青行灯完成签到,获得积分10
7秒前
7秒前
蛰伏的小宇宙完成签到 ,获得积分10
7秒前
慕青应助TN采纳,获得30
8秒前
失眠怀柔完成签到,获得积分10
8秒前
lx完成签到,获得积分10
8秒前
小巧达发布了新的文献求助20
8秒前
9秒前
甜甜友容完成签到,获得积分10
9秒前
MIAOMIAO完成签到,获得积分10
10秒前
10秒前
dajiejie完成签到 ,获得积分10
10秒前
10秒前
狗宅完成签到,获得积分10
10秒前
WELXCNK完成签到,获得积分10
11秒前
顾大喵完成签到,获得积分10
11秒前
章章发布了新的文献求助10
12秒前
CXC完成签到,获得积分10
12秒前
12秒前
龙宝完成签到,获得积分10
12秒前
科研通AI2S应助葛力采纳,获得10
12秒前
蒲黄妗子完成签到,获得积分10
12秒前
Xiaoxiao应助清钰采纳,获得10
12秒前
dali完成签到 ,获得积分10
12秒前
剑履上殿发布了新的文献求助10
13秒前
磊磊猪完成签到,获得积分10
14秒前
KIKIKI完成签到,获得积分10
14秒前
无语的海菡完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960229
求助须知:如何正确求助?哪些是违规求助? 3506394
关于积分的说明 11129617
捐赠科研通 3238551
什么是DOI,文献DOI怎么找? 1789817
邀请新用户注册赠送积分活动 871918
科研通“疑难数据库(出版商)”最低求助积分说明 803099