Analysis of Abdominal Computed Tomography Images for Automatic Liver Cancer Diagnosis Using Image Processing Algorithm

图像处理 腹部计算机断层扫描 放射科 医学 人工智能 计算机断层摄影术 计算机科学 断层摄影术 核医学 算法 图像(数学) 计算机视觉
作者
Ayesha Adil Khan,Ghous Bakhsh Narejo
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:15 (10): 972-982 被引量:14
标识
DOI:10.2174/1573405615666190716122040
摘要

Background: The application of image processing algorithms for medical image analysis has been found effectual in the past years. Imaging techniques provide assistance to the radiologists and physicians for the diagnosis of abnormalities in different organs. Objective: The proposed algorithm is designed for automatic computer-aided diagnosis of liver cancer from low contrast CT images. The idea expressed in this article is to classify the malignancy of the liver tumor ahead of liver segmentation and to locate HCC burden on the liver. Methods: A novel Fuzzy Linguistic Constant (FLC) is designed for image enhancement. To classify the enhanced liver image as cancerous or non-cancerous, fuzzy membership function is applied. The extracted features are assessed for malignancy and benignancy using the structural similarity index. The malignant CT image is further processed for automatic tumor segmentation and grading by applying morphological image processing techniques. Results: The validity of the concept is verified on a dataset of 179 clinical cases which consist of 98 benign and 81 malignant liver tumors. Classification accuracy of 98.3% is achieved by Support Vector Machine (SVM). The proposed method has the ability to automatically segment the tumor with an improved detection rate of 78% and a precision value of 0.6. Conclusion: The algorithm design offers an efficient tool to the radiologist in classifying the malignant cases from benign cases. The CAD system allows automatic segmentation of tumor and locates tumor burden on the liver. The methodology adopted can aid medical practitioners in tumor diagnosis and surgery planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十二十三发布了新的文献求助10
刚刚
1秒前
bkagyin应助隐形半鬼采纳,获得30
1秒前
呆瓜发布了新的文献求助10
2秒前
张小央完成签到,获得积分10
2秒前
yw1234发布了新的文献求助10
2秒前
3秒前
4秒前
方方土发布了新的文献求助10
5秒前
5秒前
充电宝应助天之骄子采纳,获得10
6秒前
缥缈月光应助小程快跑采纳,获得10
7秒前
WW发布了新的文献求助10
8秒前
小小青完成签到,获得积分10
8秒前
jingdaitianxiang完成签到 ,获得积分10
9秒前
lxl1996完成签到,获得积分10
9秒前
十二十三完成签到,获得积分10
10秒前
10秒前
xu发布了新的文献求助10
11秒前
离线完成签到,获得积分10
11秒前
大模型应助土豆采纳,获得10
12秒前
自由蓉完成签到,获得积分20
14秒前
Abelyang发布了新的文献求助10
14秒前
14秒前
nk完成签到 ,获得积分10
15秒前
16秒前
orixero应助sxd采纳,获得10
17秒前
能干的山雁完成签到 ,获得积分10
18秒前
火星上的盼秋完成签到,获得积分10
20秒前
呆瓜发布了新的文献求助10
21秒前
领导范儿应助鸡鸡bong采纳,获得10
22秒前
22秒前
Lucas应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得20
24秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351035
求助须知:如何正确求助?哪些是违规求助? 2976553
关于积分的说明 8675562
捐赠科研通 2657690
什么是DOI,文献DOI怎么找? 1455214
科研通“疑难数据库(出版商)”最低求助积分说明 673751
邀请新用户注册赠送积分活动 664242