BIRDNEST: Bayesian Inference for Ratings-Fraud Detection

计算机科学 推论 贝叶斯推理 公制(单位) 贝叶斯概率 领域(数学分析) 人工智能 机器学习 惊喜 数据挖掘 数学 心理学 运营管理 社会心理学 数学分析 经济
作者
Bryan Hooi,Neil Shah,Alex Beutel,Stephan Günnemann,Leman Akoglu,Mohit Kumar,Disha Makhija,Christos Faloutsos
标识
DOI:10.1137/1.9781611974348.56
摘要

Review fraud is a pervasive problem in online commerce, in which fraudulent sellers write or purchase fake reviews to manipulate perception of their products and services. Fake reviews are often detected based on several signs, including 1) they occur in short bursts of time; 2) fraudulent user accounts have skewed rating distributions. However, these may both be true in any given dataset. Hence, in this paper, we propose an approach for detecting fraudulent reviews which combines these 2 approaches in a principled manner, allowing successful detection even when one of these signs is not present. To combine these 2 approaches, we formulate our Bayesian Inference for Rating Data (BIRD) model, a flexible Bayesian model of user rating behavior. Based on our model we formulate a likelihood-based suspiciousness metric, Normalized Expected Surprise Total (NEST). We propose a linear-time algorithm for performing Bayesian inference using our model and computing the metric. Experiments on real data show that BIRDNEST successfully spots review fraud in large, real-world graphs: the 50 most suspicious users of the Flipkart platform flagged by our algorithm were investigated and all identified as fraudulent by domain experts at Flipkart.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZLHZLH完成签到,获得积分10
刚刚
李爱国应助嘀嘀哒哒采纳,获得10
刚刚
思源应助.....采纳,获得10
1秒前
1秒前
4秒前
爆米花应助Cyd采纳,获得10
5秒前
袁大头发布了新的文献求助30
5秒前
SciGPT应助至乐无乐采纳,获得30
6秒前
合适的平安完成签到,获得积分10
6秒前
岳先森发布了新的文献求助30
6秒前
刘十三发布了新的文献求助10
8秒前
dcr4328完成签到 ,获得积分20
9秒前
bqk发布了新的文献求助10
9秒前
10秒前
11秒前
万能图书馆应助无谓采纳,获得10
13秒前
孙梦涵关注了科研通微信公众号
13秒前
皮皮完成签到,获得积分10
14秒前
岳先森完成签到,获得积分10
14秒前
华仔应助袁大头采纳,获得10
16秒前
nwsmfy完成签到,获得积分10
17秒前
17秒前
dejavu完成签到 ,获得积分10
18秒前
xx完成签到 ,获得积分10
19秒前
星辰大海应助原野小年采纳,获得10
19秒前
赘婿应助至乐无乐采纳,获得10
19秒前
仰山雪发布了新的文献求助10
19秒前
20秒前
20秒前
22完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
23秒前
舒适的冰凡完成签到,获得积分10
25秒前
26秒前
26秒前
罗又柔应助yc采纳,获得10
27秒前
好久不见发布了新的文献求助20
27秒前
Sssssss完成签到,获得积分10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138255
求助须知:如何正确求助?哪些是违规求助? 2789256
关于积分的说明 7790627
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300583
科研通“疑难数据库(出版商)”最低求助积分说明 625969
版权声明 601053