A Minimax Game for Instance based Selective Transfer Learning

计算机科学 极小极大 纳什均衡 模式识别(心理学) 博弈论 博弈树
作者
Bo Wang,Minghui Qiu,Xisen Wang,Yaliang Li,Yu Gong,Xiaoyi Zeng,Jun Huang,Bo Zheng,Deng Cai,Jingren Zhou
出处
期刊:Knowledge Discovery and Data Mining 被引量:35
标识
DOI:10.1145/3292500.3330841
摘要

Deep neural network based transfer learning has been widely used to leverage information from the domain with rich data to help domain with insufficient data. When the source data distribution is different from the target data, transferring knowledge between these domains may lead to negative transfer. To mitigate this problem, a typical way is to select useful source domain data for transferring. However, limited studies focus on selecting high-quality source data to help neural network based transfer learning. To bridge this gap, we propose a general Minimax Game based model for selective Transfer Learning (MGTL). More specifically, we build a selector, a discriminator and a TL module in the proposed method. The discriminator aims to maximize the differences between selected source data and target data, while the selector acts as an attacker to selected source data that are close to the target to minimize the differences. The TL module trains on the selected data and provides rewards to guide the selector. Those three modules play a minimax game to help select useful source data for transferring. Our method is also shown to speed up the training process of the learning task in the target domain than traditional TL methods. To the best of our knowledge, this is the first to build a minimax game based model for selective transfer learning. To examine the generality of our method, we evaluate it on two different tasks: item recommendation and text retrieval. Extensive experiments over both public and real-world datasets demonstrate that our model outperforms the competing methods by a large margin. Meanwhile, the quantitative evaluation shows our model can select data which are close to target data. Our model is also deployed in a real-world system and significant improvement over the baselines is observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
breeze发布了新的文献求助50
2秒前
4秒前
uu发布了新的文献求助10
5秒前
5秒前
6秒前
生动又夏完成签到,获得积分10
7秒前
Jonathan发布了新的文献求助10
7秒前
香菜发布了新的文献求助10
7秒前
zbj662发布了新的文献求助15
8秒前
WB87应助YZQ采纳,获得10
9秒前
Lisa_Su_8055完成签到 ,获得积分10
10秒前
10秒前
11秒前
清脆雪巧完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
七七完成签到,获得积分20
13秒前
Jennifer完成签到,获得积分10
13秒前
13秒前
寻光人发布了新的文献求助10
13秒前
龙泉完成签到 ,获得积分10
14秒前
龙卷风完成签到 ,获得积分10
14秒前
16秒前
林芊万完成签到,获得积分10
16秒前
17秒前
田様应助只与你采纳,获得10
18秒前
Espoir完成签到,获得积分20
18秒前
隐形曼青应助kekekek采纳,获得10
19秒前
科研通AI6应助香菜采纳,获得10
19秒前
19秒前
橙子发布了新的文献求助10
21秒前
lcy完成签到 ,获得积分10
21秒前
22秒前
李涵睿完成签到,获得积分10
22秒前
桐桐应助He采纳,获得10
23秒前
23秒前
夙与完成签到,获得积分10
25秒前
Hosea发布了新的文献求助10
26秒前
27秒前
Kannan发布了新的文献求助10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425466
求助须知:如何正确求助?哪些是违规求助? 4539502
关于积分的说明 14168309
捐赠科研通 4457101
什么是DOI,文献DOI怎么找? 2444422
邀请新用户注册赠送积分活动 1435337
关于科研通互助平台的介绍 1412740