A Minimax Game for Instance based Selective Transfer Learning

计算机科学 极小极大 纳什均衡 模式识别(心理学) 博弈论 博弈树
作者
Bo Wang,Minghui Qiu,Xisen Wang,Yaliang Li,Yu Gong,Xiaoyi Zeng,Jun Huang,Bo Zheng,Deng Cai,Jingren Zhou
出处
期刊:Knowledge Discovery and Data Mining 被引量:35
标识
DOI:10.1145/3292500.3330841
摘要

Deep neural network based transfer learning has been widely used to leverage information from the domain with rich data to help domain with insufficient data. When the source data distribution is different from the target data, transferring knowledge between these domains may lead to negative transfer. To mitigate this problem, a typical way is to select useful source domain data for transferring. However, limited studies focus on selecting high-quality source data to help neural network based transfer learning. To bridge this gap, we propose a general Minimax Game based model for selective Transfer Learning (MGTL). More specifically, we build a selector, a discriminator and a TL module in the proposed method. The discriminator aims to maximize the differences between selected source data and target data, while the selector acts as an attacker to selected source data that are close to the target to minimize the differences. The TL module trains on the selected data and provides rewards to guide the selector. Those three modules play a minimax game to help select useful source data for transferring. Our method is also shown to speed up the training process of the learning task in the target domain than traditional TL methods. To the best of our knowledge, this is the first to build a minimax game based model for selective transfer learning. To examine the generality of our method, we evaluate it on two different tasks: item recommendation and text retrieval. Extensive experiments over both public and real-world datasets demonstrate that our model outperforms the competing methods by a large margin. Meanwhile, the quantitative evaluation shows our model can select data which are close to target data. Our model is also deployed in a real-world system and significant improvement over the baselines is observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助QQ采纳,获得10
刚刚
喵喵完成签到 ,获得积分10
刚刚
刚刚
更新中完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
gunanshu发布了新的文献求助10
1秒前
小知了发布了新的文献求助10
1秒前
1秒前
1秒前
今后应助LongSun采纳,获得10
2秒前
浪子应助冷酷男人采纳,获得10
2秒前
xinl518发布了新的文献求助10
2秒前
研友_LOakVZ发布了新的文献求助10
2秒前
愿理完成签到,获得积分10
2秒前
ll发布了新的文献求助10
2秒前
zhangyannini发布了新的文献求助10
3秒前
nature发布了新的文献求助10
3秒前
3秒前
深情安青应助马小梁采纳,获得10
4秒前
MiyaGuo发布了新的文献求助10
4秒前
香蕉觅云应助jou采纳,获得10
4秒前
阔达的海发布了新的文献求助30
4秒前
名扬天下完成签到,获得积分10
5秒前
洁净糖豆发布了新的文献求助10
5秒前
风趣夜云发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
吃瓜群众完成签到,获得积分10
7秒前
研友_VZG7GZ应助酥酥脆采纳,获得10
8秒前
8秒前
走走道疯了完成签到,获得积分20
9秒前
9秒前
凡人发布了新的文献求助10
9秒前
开心匪完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351821
求助须知:如何正确求助?哪些是违规求助? 4484784
关于积分的说明 13960373
捐赠科研通 4384451
什么是DOI,文献DOI怎么找? 2408942
邀请新用户注册赠送积分活动 1401489
关于科研通互助平台的介绍 1375007