亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Minimax Game for Instance based Selective Transfer Learning

计算机科学 极小极大 纳什均衡 模式识别(心理学) 博弈论 博弈树
作者
Bo Wang,Minghui Qiu,Xisen Wang,Yaliang Li,Yu Gong,Xiaoyi Zeng,Jun Huang,Bo Zheng,Deng Cai,Jingren Zhou
出处
期刊:Knowledge Discovery and Data Mining 被引量:35
标识
DOI:10.1145/3292500.3330841
摘要

Deep neural network based transfer learning has been widely used to leverage information from the domain with rich data to help domain with insufficient data. When the source data distribution is different from the target data, transferring knowledge between these domains may lead to negative transfer. To mitigate this problem, a typical way is to select useful source domain data for transferring. However, limited studies focus on selecting high-quality source data to help neural network based transfer learning. To bridge this gap, we propose a general Minimax Game based model for selective Transfer Learning (MGTL). More specifically, we build a selector, a discriminator and a TL module in the proposed method. The discriminator aims to maximize the differences between selected source data and target data, while the selector acts as an attacker to selected source data that are close to the target to minimize the differences. The TL module trains on the selected data and provides rewards to guide the selector. Those three modules play a minimax game to help select useful source data for transferring. Our method is also shown to speed up the training process of the learning task in the target domain than traditional TL methods. To the best of our knowledge, this is the first to build a minimax game based model for selective transfer learning. To examine the generality of our method, we evaluate it on two different tasks: item recommendation and text retrieval. Extensive experiments over both public and real-world datasets demonstrate that our model outperforms the competing methods by a large margin. Meanwhile, the quantitative evaluation shows our model can select data which are close to target data. Our model is also deployed in a real-world system and significant improvement over the baselines is observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slayers完成签到 ,获得积分10
30秒前
56秒前
story发布了新的文献求助30
1分钟前
1分钟前
Owen应助光亮雁玉采纳,获得10
1分钟前
SL完成签到,获得积分10
1分钟前
乐乐应助story采纳,获得10
1分钟前
科研通AI5应助光亮雁玉采纳,获得10
1分钟前
1分钟前
爆米花应助光亮雁玉采纳,获得10
1分钟前
Lny发布了新的文献求助20
1分钟前
冰西瓜完成签到 ,获得积分0
1分钟前
科目三应助光亮雁玉采纳,获得10
1分钟前
1分钟前
科研通AI5应助光亮雁玉采纳,获得10
1分钟前
鲁棒的砰砰砰完成签到,获得积分10
2分钟前
2分钟前
Artin发布了新的文献求助30
2分钟前
Ysn发布了新的文献求助10
2分钟前
科研通AI2S应助Ysn采纳,获得10
2分钟前
2分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
Jim完成签到,获得积分10
3分钟前
3分钟前
puutteita发布了新的文献求助10
3分钟前
wynne313完成签到 ,获得积分10
3分钟前
海妍完成签到,获得积分10
3分钟前
海妍发布了新的文献求助10
3分钟前
我是笨蛋完成签到 ,获得积分10
3分钟前
4分钟前
Artin完成签到,获得积分10
4分钟前
研友_LwlDdn发布了新的文献求助10
4分钟前
nnc发布了新的文献求助50
4分钟前
Weiwei应助nnc采纳,获得50
4分钟前
nnc完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助wuran采纳,获得10
4分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569031
求助须知:如何正确求助?哪些是违规求助? 3991376
关于积分的说明 12355741
捐赠科研通 3663539
什么是DOI,文献DOI怎么找? 2018986
邀请新用户注册赠送积分活动 1053396
科研通“疑难数据库(出版商)”最低求助积分说明 940955