A Minimax Game for Instance based Selective Transfer Learning

计算机科学 极小极大 纳什均衡 模式识别(心理学) 博弈论 博弈树
作者
Bo Wang,Minghui Qiu,Xisen Wang,Yaliang Li,Yu Gong,Xiaoyi Zeng,Jun Huang,Bo Zheng,Deng Cai,Jingren Zhou
出处
期刊:Knowledge Discovery and Data Mining 被引量:35
标识
DOI:10.1145/3292500.3330841
摘要

Deep neural network based transfer learning has been widely used to leverage information from the domain with rich data to help domain with insufficient data. When the source data distribution is different from the target data, transferring knowledge between these domains may lead to negative transfer. To mitigate this problem, a typical way is to select useful source domain data for transferring. However, limited studies focus on selecting high-quality source data to help neural network based transfer learning. To bridge this gap, we propose a general Minimax Game based model for selective Transfer Learning (MGTL). More specifically, we build a selector, a discriminator and a TL module in the proposed method. The discriminator aims to maximize the differences between selected source data and target data, while the selector acts as an attacker to selected source data that are close to the target to minimize the differences. The TL module trains on the selected data and provides rewards to guide the selector. Those three modules play a minimax game to help select useful source data for transferring. Our method is also shown to speed up the training process of the learning task in the target domain than traditional TL methods. To the best of our knowledge, this is the first to build a minimax game based model for selective transfer learning. To examine the generality of our method, we evaluate it on two different tasks: item recommendation and text retrieval. Extensive experiments over both public and real-world datasets demonstrate that our model outperforms the competing methods by a large margin. Meanwhile, the quantitative evaluation shows our model can select data which are close to target data. Our model is also deployed in a real-world system and significant improvement over the baselines is observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研一小刘完成签到,获得积分10
刚刚
善良的路灯完成签到,获得积分10
1秒前
uu发布了新的文献求助10
1秒前
2秒前
易烊千玺发布了新的文献求助10
3秒前
请叫我风吹麦浪应助HJJHJH采纳,获得20
3秒前
ZBN发布了新的文献求助10
3秒前
3秒前
善学以致用应助123采纳,获得10
5秒前
5秒前
6秒前
AFEUWOS01发布了新的文献求助30
6秒前
星辰大海应助Left采纳,获得10
6秒前
sansan发布了新的文献求助10
7秒前
哈哈哈完成签到,获得积分10
7秒前
科研通AI5应助DTT采纳,获得10
8秒前
8秒前
9秒前
坚强不言完成签到,获得积分10
9秒前
9秒前
小天应助善良的路灯采纳,获得30
10秒前
10秒前
脑洞疼应助yigu采纳,获得10
11秒前
11秒前
Hu完成签到 ,获得积分10
13秒前
liuyan432完成签到,获得积分10
13秒前
cc完成签到,获得积分10
13秒前
易烊千玺完成签到,获得积分20
13秒前
哒哒哒哒完成签到,获得积分10
13秒前
14秒前
李健应助陶醉觅夏采纳,获得10
15秒前
15秒前
独特凡松完成签到,获得积分10
15秒前
木笔朱瑾完成签到 ,获得积分10
16秒前
Rinohalt完成签到,获得积分10
16秒前
17秒前
孙梁子完成签到,获得积分10
17秒前
核桃花生奶兔完成签到 ,获得积分10
18秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794