亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Minimax Game for Instance based Selective Transfer Learning

计算机科学 极小极大 纳什均衡 模式识别(心理学) 博弈论 博弈树
作者
Bo Wang,Minghui Qiu,Xisen Wang,Yaliang Li,Yu Gong,Xiaoyi Zeng,Jun Huang,Bo Zheng,Deng Cai,Jingren Zhou
出处
期刊:Knowledge Discovery and Data Mining 被引量:35
标识
DOI:10.1145/3292500.3330841
摘要

Deep neural network based transfer learning has been widely used to leverage information from the domain with rich data to help domain with insufficient data. When the source data distribution is different from the target data, transferring knowledge between these domains may lead to negative transfer. To mitigate this problem, a typical way is to select useful source domain data for transferring. However, limited studies focus on selecting high-quality source data to help neural network based transfer learning. To bridge this gap, we propose a general Minimax Game based model for selective Transfer Learning (MGTL). More specifically, we build a selector, a discriminator and a TL module in the proposed method. The discriminator aims to maximize the differences between selected source data and target data, while the selector acts as an attacker to selected source data that are close to the target to minimize the differences. The TL module trains on the selected data and provides rewards to guide the selector. Those three modules play a minimax game to help select useful source data for transferring. Our method is also shown to speed up the training process of the learning task in the target domain than traditional TL methods. To the best of our knowledge, this is the first to build a minimax game based model for selective transfer learning. To examine the generality of our method, we evaluate it on two different tasks: item recommendation and text retrieval. Extensive experiments over both public and real-world datasets demonstrate that our model outperforms the competing methods by a large margin. Meanwhile, the quantitative evaluation shows our model can select data which are close to target data. Our model is also deployed in a real-world system and significant improvement over the baselines is observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kevin发布了新的文献求助10
1秒前
lessismore发布了新的文献求助10
13秒前
HYQ关闭了HYQ文献求助
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
Kevin完成签到,获得积分10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
漂亮的秋天完成签到 ,获得积分10
2分钟前
yummm完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
核桃应助不安的靖柔采纳,获得10
2分钟前
核桃应助不安的靖柔采纳,获得10
2分钟前
不安的靖柔完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
whj完成签到 ,获得积分10
6分钟前
6分钟前
迟梦琪发布了新的文献求助10
6分钟前
HYQ发布了新的文献求助10
7分钟前
迟梦琪完成签到,获得积分20
7分钟前
三世完成签到 ,获得积分10
7分钟前
gszy1975完成签到,获得积分10
7分钟前
7分钟前
红影完成签到,获得积分10
7分钟前
细腻笑卉发布了新的文献求助20
8分钟前
细腻笑卉完成签到 ,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
feihua1完成签到 ,获得积分10
11分钟前
11分钟前
tranphucthinh发布了新的文献求助10
11分钟前
tranphucthinh完成签到,获得积分10
11分钟前
CodeCraft应助章赛采纳,获得10
12分钟前
13分钟前
SciGPT应助小冯看不懂采纳,获得10
13分钟前
科研通AI5应助羞涩的寒松采纳,获得10
13分钟前
熊熊完成签到 ,获得积分10
13分钟前
13分钟前
13分钟前
14分钟前
章赛发布了新的文献求助10
14分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127256
求助须知:如何正确求助?哪些是违规求助? 4330378
关于积分的说明 13493304
捐赠科研通 4165925
什么是DOI,文献DOI怎么找? 2283680
邀请新用户注册赠送积分活动 1284704
关于科研通互助平台的介绍 1224683