A Minimax Game for Instance based Selective Transfer Learning

计算机科学 极小极大 纳什均衡 模式识别(心理学) 博弈论 博弈树
作者
Bo Wang,Minghui Qiu,Xisen Wang,Yaliang Li,Yu Gong,Xiaoyi Zeng,Jun Huang,Bo Zheng,Deng Cai,Jingren Zhou
出处
期刊:Knowledge Discovery and Data Mining 被引量:35
标识
DOI:10.1145/3292500.3330841
摘要

Deep neural network based transfer learning has been widely used to leverage information from the domain with rich data to help domain with insufficient data. When the source data distribution is different from the target data, transferring knowledge between these domains may lead to negative transfer. To mitigate this problem, a typical way is to select useful source domain data for transferring. However, limited studies focus on selecting high-quality source data to help neural network based transfer learning. To bridge this gap, we propose a general Minimax Game based model for selective Transfer Learning (MGTL). More specifically, we build a selector, a discriminator and a TL module in the proposed method. The discriminator aims to maximize the differences between selected source data and target data, while the selector acts as an attacker to selected source data that are close to the target to minimize the differences. The TL module trains on the selected data and provides rewards to guide the selector. Those three modules play a minimax game to help select useful source data for transferring. Our method is also shown to speed up the training process of the learning task in the target domain than traditional TL methods. To the best of our knowledge, this is the first to build a minimax game based model for selective transfer learning. To examine the generality of our method, we evaluate it on two different tasks: item recommendation and text retrieval. Extensive experiments over both public and real-world datasets demonstrate that our model outperforms the competing methods by a large margin. Meanwhile, the quantitative evaluation shows our model can select data which are close to target data. Our model is also deployed in a real-world system and significant improvement over the baselines is observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小能手完成签到,获得积分10
1秒前
cctv18应助加油写论文采纳,获得30
1秒前
怀海的鱼完成签到,获得积分10
2秒前
3秒前
小其发布了新的文献求助10
3秒前
3秒前
sp完成签到,获得积分10
4秒前
Henry应助Foura采纳,获得200
4秒前
呆萌语梦完成签到,获得积分10
4秒前
4秒前
阿朱发布了新的文献求助10
4秒前
5秒前
NexusExplorer应助Veronica采纳,获得10
6秒前
后来驳回了Owen应助
8秒前
无花果应助Peanut采纳,获得10
8秒前
8秒前
1021完成签到 ,获得积分10
8秒前
白白熊发布了新的文献求助10
9秒前
蔡晓华发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
zc19891130完成签到,获得积分10
13秒前
研友_VZG7GZ应助松果采纳,获得10
13秒前
17秒前
18秒前
Peanut发布了新的文献求助10
22秒前
美满的皮卡丘完成签到 ,获得积分10
24秒前
王w完成签到,获得积分10
26秒前
26秒前
罗盘完成签到,获得积分10
26秒前
甜美幻露应助松果采纳,获得10
26秒前
鹿飞完成签到,获得积分10
27秒前
28秒前
Peanut完成签到,获得积分20
28秒前
having完成签到,获得积分10
30秒前
明亮的千亦完成签到,获得积分10
30秒前
坚强白凝发布了新的文献求助10
31秒前
orixero应助cqy采纳,获得10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247691
求助须知:如何正确求助?哪些是违规求助? 2890959
关于积分的说明 8265537
捐赠科研通 2559214
什么是DOI,文献DOI怎么找? 1387979
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627552