亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Holistic Reinforcement Learning: The Role of Structure and Attention

强化学习 推论 贝叶斯推理 人工智能 认知 计算机科学 贝叶斯概率 机器学习 认知科学 心理学 神经科学
作者
Angela Radulescu,Yaron Niv,Ian C. Ballard
出处
期刊:Trends in Cognitive Sciences [Elsevier BV]
卷期号:23 (4): 278-292 被引量:66
标识
DOI:10.1016/j.tics.2019.01.010
摘要

Recent advances have refined our understanding of reinforcement learning by emphasizing roles for attention and for structured knowledge in shaping ongoing learning. Bayesian cognitive models have made great strides towards describing how structured knowledge can be learned, but their computational complexity challenges neuroscientific implementation. Behavioral and neural evidence suggests that each class of algorithms describes unique aspects of human learning. We propose an integration of these computational approaches in which structured knowledge learned through approximate Bayesian inference acts as a source of top-down attention, which shapes the environmental representation over which reinforcement learning occurs. Compact representations of the environment allow humans to behave efficiently in a complex world. Reinforcement learning models capture many behavioral and neural effects but do not explain recent findings showing that structure in the environment influences learning. In parallel, Bayesian cognitive models predict how humans learn structured knowledge but do not have a clear neurobiological implementation. We propose an integration of these two model classes in which structured knowledge learned via approximate Bayesian inference acts as a source of selective attention. In turn, selective attention biases reinforcement learning towards relevant dimensions of the environment. An understanding of structure learning will help to resolve the fundamental challenge in decision science: explaining why people make the decisions they do. Compact representations of the environment allow humans to behave efficiently in a complex world. Reinforcement learning models capture many behavioral and neural effects but do not explain recent findings showing that structure in the environment influences learning. In parallel, Bayesian cognitive models predict how humans learn structured knowledge but do not have a clear neurobiological implementation. We propose an integration of these two model classes in which structured knowledge learned via approximate Bayesian inference acts as a source of selective attention. In turn, selective attention biases reinforcement learning towards relevant dimensions of the environment. An understanding of structure learning will help to resolve the fundamental challenge in decision science: explaining why people make the decisions they do. a response the participant makes (e.g., choosing an option, labeling a stimulus, predicting an outcome). a class of Bayesian cognitive models that group observations into sets of unobservable latent causes, or clusters. a subset of environmental features relevant to the agent’s goal (e.g., the feature red being more predictive of reward). a class of sampling methods for approximating arbitrary probability distributions in a sequential manner, by maintaining and updating a finite number of particles (hypotheses). a stimulus, potentially with multiple features. a class of Bayesian cognitive models that reason over structured concepts such as rules. a class of algorithms that learn an optimal behavioral policy, often through learning the values of different actions in different states. the process by which learners arrive at a representation of environmental states. consequence of an action (e.g., a reward or category label). the difference between the reward outcome and what was expected; used as a learning signal to update values of states and actions. the agent’s internal representation of the environmental state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yao完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助50
1分钟前
满意的伊完成签到,获得积分10
1分钟前
Jiangtao完成签到,获得积分10
2分钟前
leapper完成签到,获得积分10
2分钟前
乐乐应助哦豁拐咯采纳,获得10
3分钟前
4分钟前
4分钟前
哦豁拐咯发布了新的文献求助10
4分钟前
黎琨烨发布了新的文献求助10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
科研通AI5应助黎琨烨采纳,获得10
4分钟前
黎琨烨完成签到,获得积分10
4分钟前
4分钟前
xiaoju完成签到,获得积分10
5分钟前
科研通AI2S应助哦豁拐咯采纳,获得10
5分钟前
Ava应助Wednesday Chong采纳,获得10
5分钟前
wwe完成签到,获得积分10
5分钟前
张新悦完成签到,获得积分20
6分钟前
上官若男应助cc采纳,获得10
6分钟前
leapper发布了新的文献求助10
6分钟前
张新悦发布了新的文献求助20
6分钟前
6分钟前
cc发布了新的文献求助10
6分钟前
李志全完成签到 ,获得积分10
6分钟前
哦豁拐咯完成签到,获得积分10
6分钟前
7分钟前
7分钟前
所所应助张新悦采纳,获得10
7分钟前
赘婿应助Willow采纳,获得10
7分钟前
GPTea应助科研通管家采纳,获得20
8分钟前
量子星尘发布了新的文献求助10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
楠楠完成签到,获得积分10
8分钟前
chenyimei发布了新的文献求助200
9分钟前
Hello应助楠楠采纳,获得10
9分钟前
失眠问晴完成签到,获得积分10
9分钟前
mama完成签到 ,获得积分10
9分钟前
GPTea应助科研通管家采纳,获得20
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4995896
求助须知:如何正确求助?哪些是违规求助? 4242731
关于积分的说明 13216366
捐赠科研通 4038840
什么是DOI,文献DOI怎么找? 2209922
邀请新用户注册赠送积分活动 1220664
关于科研通互助平台的介绍 1139796