亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Holistic Reinforcement Learning: The Role of Structure and Attention

强化学习 推论 贝叶斯推理 人工智能 认知 计算机科学 贝叶斯概率 机器学习 认知科学 心理学 神经科学
作者
Angela Radulescu,Yaron Niv,Ian C. Ballard
出处
期刊:Trends in Cognitive Sciences [Elsevier BV]
卷期号:23 (4): 278-292 被引量:66
标识
DOI:10.1016/j.tics.2019.01.010
摘要

Recent advances have refined our understanding of reinforcement learning by emphasizing roles for attention and for structured knowledge in shaping ongoing learning. Bayesian cognitive models have made great strides towards describing how structured knowledge can be learned, but their computational complexity challenges neuroscientific implementation. Behavioral and neural evidence suggests that each class of algorithms describes unique aspects of human learning. We propose an integration of these computational approaches in which structured knowledge learned through approximate Bayesian inference acts as a source of top-down attention, which shapes the environmental representation over which reinforcement learning occurs. Compact representations of the environment allow humans to behave efficiently in a complex world. Reinforcement learning models capture many behavioral and neural effects but do not explain recent findings showing that structure in the environment influences learning. In parallel, Bayesian cognitive models predict how humans learn structured knowledge but do not have a clear neurobiological implementation. We propose an integration of these two model classes in which structured knowledge learned via approximate Bayesian inference acts as a source of selective attention. In turn, selective attention biases reinforcement learning towards relevant dimensions of the environment. An understanding of structure learning will help to resolve the fundamental challenge in decision science: explaining why people make the decisions they do. Compact representations of the environment allow humans to behave efficiently in a complex world. Reinforcement learning models capture many behavioral and neural effects but do not explain recent findings showing that structure in the environment influences learning. In parallel, Bayesian cognitive models predict how humans learn structured knowledge but do not have a clear neurobiological implementation. We propose an integration of these two model classes in which structured knowledge learned via approximate Bayesian inference acts as a source of selective attention. In turn, selective attention biases reinforcement learning towards relevant dimensions of the environment. An understanding of structure learning will help to resolve the fundamental challenge in decision science: explaining why people make the decisions they do. a response the participant makes (e.g., choosing an option, labeling a stimulus, predicting an outcome). a class of Bayesian cognitive models that group observations into sets of unobservable latent causes, or clusters. a subset of environmental features relevant to the agent’s goal (e.g., the feature red being more predictive of reward). a class of sampling methods for approximating arbitrary probability distributions in a sequential manner, by maintaining and updating a finite number of particles (hypotheses). a stimulus, potentially with multiple features. a class of Bayesian cognitive models that reason over structured concepts such as rules. a class of algorithms that learn an optimal behavioral policy, often through learning the values of different actions in different states. the process by which learners arrive at a representation of environmental states. consequence of an action (e.g., a reward or category label). the difference between the reward outcome and what was expected; used as a learning signal to update values of states and actions. the agent’s internal representation of the environmental state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青枫完成签到,获得积分10
8秒前
10秒前
eye发布了新的文献求助30
15秒前
陈C完成签到 ,获得积分10
22秒前
科研通AI2S应助嗯哼哈哈采纳,获得10
23秒前
30秒前
cccccccc发布了新的文献求助10
33秒前
fafamimireredo完成签到,获得积分10
42秒前
时尚的冰棍儿完成签到 ,获得积分10
42秒前
44秒前
49秒前
57秒前
1分钟前
1分钟前
eye发布了新的文献求助10
1分钟前
gt完成签到 ,获得积分10
1分钟前
汉堡包应助eye采纳,获得10
1分钟前
1分钟前
852应助Zirong采纳,获得10
1分钟前
冉亦完成签到,获得积分10
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
1分钟前
感动的春天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
善学以致用应助支水云采纳,获得10
1分钟前
阿亞完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
文静的听荷完成签到 ,获得积分10
2分钟前
我是老大应助wutong采纳,获得10
2分钟前
chenting完成签到 ,获得积分10
2分钟前
2分钟前
支水云发布了新的文献求助10
2分钟前
科研通AI2S应助嗯哼哈哈采纳,获得10
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965604
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245345
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188