Holistic Reinforcement Learning: The Role of Structure and Attention

强化学习 推论 贝叶斯推理 人工智能 认知 计算机科学 贝叶斯概率 机器学习 认知科学 心理学 神经科学
作者
Angela Radulescu,Yaron Niv,Ian C. Ballard
出处
期刊:Trends in Cognitive Sciences [Elsevier BV]
卷期号:23 (4): 278-292 被引量:66
标识
DOI:10.1016/j.tics.2019.01.010
摘要

Recent advances have refined our understanding of reinforcement learning by emphasizing roles for attention and for structured knowledge in shaping ongoing learning. Bayesian cognitive models have made great strides towards describing how structured knowledge can be learned, but their computational complexity challenges neuroscientific implementation. Behavioral and neural evidence suggests that each class of algorithms describes unique aspects of human learning. We propose an integration of these computational approaches in which structured knowledge learned through approximate Bayesian inference acts as a source of top-down attention, which shapes the environmental representation over which reinforcement learning occurs. Compact representations of the environment allow humans to behave efficiently in a complex world. Reinforcement learning models capture many behavioral and neural effects but do not explain recent findings showing that structure in the environment influences learning. In parallel, Bayesian cognitive models predict how humans learn structured knowledge but do not have a clear neurobiological implementation. We propose an integration of these two model classes in which structured knowledge learned via approximate Bayesian inference acts as a source of selective attention. In turn, selective attention biases reinforcement learning towards relevant dimensions of the environment. An understanding of structure learning will help to resolve the fundamental challenge in decision science: explaining why people make the decisions they do. Compact representations of the environment allow humans to behave efficiently in a complex world. Reinforcement learning models capture many behavioral and neural effects but do not explain recent findings showing that structure in the environment influences learning. In parallel, Bayesian cognitive models predict how humans learn structured knowledge but do not have a clear neurobiological implementation. We propose an integration of these two model classes in which structured knowledge learned via approximate Bayesian inference acts as a source of selective attention. In turn, selective attention biases reinforcement learning towards relevant dimensions of the environment. An understanding of structure learning will help to resolve the fundamental challenge in decision science: explaining why people make the decisions they do. a response the participant makes (e.g., choosing an option, labeling a stimulus, predicting an outcome). a class of Bayesian cognitive models that group observations into sets of unobservable latent causes, or clusters. a subset of environmental features relevant to the agent’s goal (e.g., the feature red being more predictive of reward). a class of sampling methods for approximating arbitrary probability distributions in a sequential manner, by maintaining and updating a finite number of particles (hypotheses). a stimulus, potentially with multiple features. a class of Bayesian cognitive models that reason over structured concepts such as rules. a class of algorithms that learn an optimal behavioral policy, often through learning the values of different actions in different states. the process by which learners arrive at a representation of environmental states. consequence of an action (e.g., a reward or category label). the difference between the reward outcome and what was expected; used as a learning signal to update values of states and actions. the agent’s internal representation of the environmental state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IVY1300发布了新的文献求助10
刚刚
zj完成签到,获得积分10
1秒前
残酷的风完成签到,获得积分10
1秒前
11发布了新的文献求助10
2秒前
协奏曲完成签到 ,获得积分10
2秒前
SWW关注了科研通微信公众号
2秒前
Song完成签到,获得积分10
2秒前
我是老大应助唠叨的又菡采纳,获得10
2秒前
3秒前
3秒前
dan1029发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
杨111完成签到 ,获得积分10
4秒前
cc完成签到 ,获得积分10
4秒前
4秒前
斯文败类应助王继刚采纳,获得10
5秒前
6秒前
拼搏的路灯完成签到,获得积分20
6秒前
6秒前
叶子完成签到 ,获得积分10
7秒前
肖耶啵完成签到,获得积分10
7秒前
Njsgala完成签到,获得积分10
8秒前
科研人完成签到,获得积分10
8秒前
11完成签到,获得积分10
9秒前
喵喵描白完成签到,获得积分10
9秒前
CT发布了新的文献求助10
9秒前
Donbin886完成签到,获得积分10
9秒前
与淇完成签到,获得积分10
10秒前
菲菲完成签到 ,获得积分10
10秒前
10秒前
大恩区完成签到,获得积分10
10秒前
俊逸初瑶完成签到,获得积分20
10秒前
mumufan完成签到,获得积分10
10秒前
11秒前
Joy发布了新的文献求助10
11秒前
NexusExplorer应助执玉采纳,获得10
11秒前
老迟到的幼枫完成签到,获得积分10
11秒前
一蓑烟雨完成签到,获得积分10
12秒前
一台小钢炮完成签到,获得积分10
12秒前
alys完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763