Holistic Reinforcement Learning: The Role of Structure and Attention

强化学习 推论 贝叶斯推理 人工智能 认知 计算机科学 贝叶斯概率 机器学习 认知科学 心理学 神经科学
作者
Angela Radulescu,Yaron Niv,Ian C. Ballard
出处
期刊:Trends in Cognitive Sciences [Elsevier]
卷期号:23 (4): 278-292 被引量:66
标识
DOI:10.1016/j.tics.2019.01.010
摘要

Recent advances have refined our understanding of reinforcement learning by emphasizing roles for attention and for structured knowledge in shaping ongoing learning. Bayesian cognitive models have made great strides towards describing how structured knowledge can be learned, but their computational complexity challenges neuroscientific implementation. Behavioral and neural evidence suggests that each class of algorithms describes unique aspects of human learning. We propose an integration of these computational approaches in which structured knowledge learned through approximate Bayesian inference acts as a source of top-down attention, which shapes the environmental representation over which reinforcement learning occurs. Compact representations of the environment allow humans to behave efficiently in a complex world. Reinforcement learning models capture many behavioral and neural effects but do not explain recent findings showing that structure in the environment influences learning. In parallel, Bayesian cognitive models predict how humans learn structured knowledge but do not have a clear neurobiological implementation. We propose an integration of these two model classes in which structured knowledge learned via approximate Bayesian inference acts as a source of selective attention. In turn, selective attention biases reinforcement learning towards relevant dimensions of the environment. An understanding of structure learning will help to resolve the fundamental challenge in decision science: explaining why people make the decisions they do. Compact representations of the environment allow humans to behave efficiently in a complex world. Reinforcement learning models capture many behavioral and neural effects but do not explain recent findings showing that structure in the environment influences learning. In parallel, Bayesian cognitive models predict how humans learn structured knowledge but do not have a clear neurobiological implementation. We propose an integration of these two model classes in which structured knowledge learned via approximate Bayesian inference acts as a source of selective attention. In turn, selective attention biases reinforcement learning towards relevant dimensions of the environment. An understanding of structure learning will help to resolve the fundamental challenge in decision science: explaining why people make the decisions they do. a response the participant makes (e.g., choosing an option, labeling a stimulus, predicting an outcome). a class of Bayesian cognitive models that group observations into sets of unobservable latent causes, or clusters. a subset of environmental features relevant to the agent’s goal (e.g., the feature red being more predictive of reward). a class of sampling methods for approximating arbitrary probability distributions in a sequential manner, by maintaining and updating a finite number of particles (hypotheses). a stimulus, potentially with multiple features. a class of Bayesian cognitive models that reason over structured concepts such as rules. a class of algorithms that learn an optimal behavioral policy, often through learning the values of different actions in different states. the process by which learners arrive at a representation of environmental states. consequence of an action (e.g., a reward or category label). the difference between the reward outcome and what was expected; used as a learning signal to update values of states and actions. the agent’s internal representation of the environmental state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
vergil完成签到,获得积分10
2秒前
clearlove完成签到,获得积分10
3秒前
3秒前
小二郎应助xudanhong采纳,获得10
4秒前
ured发布了新的文献求助10
4秒前
之道发布了新的文献求助10
4秒前
4秒前
Z160发布了新的文献求助10
4秒前
why完成签到,获得积分10
4秒前
4秒前
今后应助jtksbf采纳,获得30
5秒前
酷波er应助舒服的小土豆采纳,获得10
6秒前
爱静静应助clearlove采纳,获得10
6秒前
Lm发布了新的文献求助10
6秒前
7秒前
ymk完成签到,获得积分20
7秒前
哎嘿应助我心如铁石采纳,获得10
7秒前
深情安青应助自然方盒采纳,获得10
7秒前
7秒前
Neurodog完成签到,获得积分10
8秒前
LL完成签到,获得积分10
9秒前
11秒前
直立抽油烟机完成签到,获得积分10
11秒前
nininidoc完成签到,获得积分10
11秒前
安好发布了新的文献求助10
11秒前
gg发布了新的文献求助10
12秒前
12秒前
小杜发布了新的文献求助10
13秒前
13秒前
MUAL完成签到,获得积分10
13秒前
14秒前
烟花应助花凉采纳,获得10
14秒前
15秒前
想吃芝士焗饭完成签到 ,获得积分10
15秒前
妖精完成签到 ,获得积分10
15秒前
宁阿霜发布了新的文献求助10
16秒前
fxf完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151531
求助须知:如何正确求助?哪些是违规求助? 2802910
关于积分的说明 7851162
捐赠科研通 2460322
什么是DOI,文献DOI怎么找? 1309707
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760