纳滤
膜
化学
亚苯基
化学工程
选择性
高分子化学
色谱法
聚合物
有机化学
生物化学
工程类
催化作用
作者
Chun‐Er Lin,Li‐Feng Fang,Shi-Yuan Du,Zhikan Yao,Bao‐Ku Zhu
标识
DOI:10.1016/j.seppur.2018.11.026
摘要
A novel positively charged nanofiltration membrane was designed and prepared by a simultaneous cross-linking/quaternization of poly(m-phenylene isophthalamide)/polyethyleneimine (PMIA/PEI) blend precursor membrane. To improve the PEI retention ratio during precursor membrane fabrication, propanetriol glycidyl ether (PTGE) was used as a cross-linker. For nanofiltration preparation, the cross-linking time and p-xylylene dichloride (XDC) concentration were optimized. A comprehensive characterization of the nanofiltration membrane was conducted in terms of chemical composition, surface morphology, surface charge, pore structures and separation properties. Results indicated that the density of the positive charge increased after the simultaneous cross-linking/quaternization. The nanofiltration membrane with pore size in the range of 0.5–2 nm exhibited high MgCl2 rejection of 94.4% and water permeability of 37.3 L m−2 h−1 at 0.4 MPa. Furthermore, to make a comparison between the PMIA/PEI nanofiltration membrane and the other PEI based nanofiltration membranes in the previous studies, an empirical upper bound correlation between water permeability and water/salt selectivity was established. Due to the high density of positive charge on the membrane, the mono-/divalent ion (Na+/Mg2+) selectivity of this novel nanofiltration membrane was at a high level compared with recent reports and much higher than commercial nanofiltration membranes. This work provides an effective method for fabricating the highly positively charged nanofiltration membrane which has great potential for multivalent cations separation.
科研通智能强力驱动
Strongly Powered by AbleSci AI