Automated segmentation of macular edema in OCT using deep neural networks

人工智能 分割 计算机科学 光学相干层析成像 黄斑水肿 增采样 黄斑变性 深度学习 联营 模式识别(心理学) 计算机视觉 视力 医学 眼科 图像(数学)
作者
Junjie Hu,Yuanyuan Chen,Yi Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:55: 216-227 被引量:73
标识
DOI:10.1016/j.media.2019.05.002
摘要

Macular edema is an eye disease that can affect visual acuity. Typical disease symptoms include subretinal fluid (SRF) and pigment epithelium detachment (PED). Optical coherence tomography (OCT) has been widely used for diagnosing macular edema because of its non-invasive and high resolution properties. Segmentation for macular edema lesions from OCT images plays an important role in clinical diagnosis. Many computer-aided systems have been proposed for the segmentation. Most traditional segmentation methods used in these systems are based on low-level hand-crafted features, which require significant domain knowledge and are sensitive to the variations of lesions. To overcome these shortcomings, this paper proposes to use deep neural networks (DNNs) together with atrous spatial pyramid pooling (ASPP) to automatically segment the SRF and PED lesions. Lesions-related features are first extracted by DNNs, then processed by ASPP which is composed of multiple atrous convolutions with different fields of view to accommodate the various scales of the lesions. Based on ASPP, a novel module called stochastic ASPP (sASPP) is proposed to combat the co-adaptation of multiple atrous convolutions. A large OCT dataset provided by a competition platform called “AI Challenger” are used to train and evaluate the proposed model. Experimental results demonstrate that the DNNs together with ASPP achieve higher segmentation accuracy compared with the state-of-the-art method. The stochastic operation added in sASPP is empirically verified as an effective regularization method that can alleviate the overfitting problem and significantly reduce the validation error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助积极的无极采纳,获得10
1秒前
1秒前
1秒前
yang完成签到,获得积分10
2秒前
2秒前
夏天就应该爬树完成签到,获得积分10
2秒前
3秒前
3秒前
dd完成签到,获得积分10
3秒前
枝桠完成签到,获得积分10
4秒前
TPolymer完成签到,获得积分10
4秒前
4秒前
5秒前
打打应助zx采纳,获得10
5秒前
jzhou88完成签到,获得积分10
5秒前
5秒前
星河完成签到,获得积分10
6秒前
6秒前
susu发布了新的文献求助10
6秒前
chen发布了新的文献求助10
6秒前
6秒前
小李儿发布了新的文献求助10
7秒前
科研通AI2S应助科研小笨猪采纳,获得10
7秒前
科研通AI2S应助科研小笨猪采纳,获得10
7秒前
7秒前
7秒前
忧虑的羊发布了新的文献求助10
8秒前
念念发布了新的文献求助10
8秒前
不懈奋进应助勤恳惮采纳,获得30
8秒前
张倩完成签到,获得积分10
8秒前
9秒前
FAN发布了新的文献求助10
9秒前
燕子完成签到,获得积分10
10秒前
DKE完成签到,获得积分10
10秒前
adelalady完成签到,获得积分10
10秒前
10秒前
Never stall发布了新的文献求助10
11秒前
木木发布了新的文献求助10
11秒前
MR_Z完成签到,获得积分10
11秒前
苹果听蓉完成签到,获得积分10
11秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158884
求助须知:如何正确求助?哪些是违规求助? 2810072
关于积分的说明 7885775
捐赠科研通 2468916
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012