亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier

计算机科学 并行计算 浮点型 计算
作者
Shaghayegh Vahdat,Mehdi Kamal,Ali Afzali-Kusha,Massoud Pedram
出处
期刊:IEEE Transactions on Very Large Scale Integration Systems [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 1161-1173 被引量:36
标识
DOI:10.1109/tvlsi.2018.2890712
摘要

A scalable approximate multiplier, called truncation- and rounding-based scalable approximate multiplier (TOSAM) is presented, which reduces the number of partial products by truncating each of the input operands based on their leading one-bit position. In the proposed design, multiplication is performed by shift, add, and small fixed-width multiplication operations resulting in large improvements in the energy consumption and area occupation compared to those of the exact multiplier. To improve the total accuracy, input operands of the multiplication part are rounded to the nearest odd number. Because input operands are truncated based on their leading one-bit positions, the accuracy becomes weakly dependent on the width of the input operands and the multiplier becomes scalable. Higher improvements in design parameters (e.g., area and energy consumption) can be achieved as the input operand widths increase. To evaluate the efficiency of the proposed approximate multiplier, its design parameters are compared with those of an exact multiplier and some other recently proposed approximate multipliers. Results reveal that the proposed approximate multiplier with a mean absolute relative error in the range of 11%–0.3% improves delay, area, and energy consumption up to 41%, 90%, and 98%, respectively, compared to those of the exact multiplier. It also outperforms other approximate multipliers in terms of speed, area, and energy consumption. The proposed approximate multiplier has an almost Gaussian error distribution with a near-zero mean value. We exploit it in the structure of a JPEG encoder, sharpening, and classification applications. The results indicate that the quality degradation of the output is negligible. In addition, we suggest an accuracy configurable TOSAM where the energy consumption of the multiplication operation can be adjusted based on the minimum required accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ROMANTIC完成签到 ,获得积分10
4秒前
5秒前
Lucas应助开朗灵萱采纳,获得10
8秒前
YUE66完成签到,获得积分10
15秒前
17秒前
开朗灵萱发布了新的文献求助10
22秒前
情怀应助奋斗的马里奥采纳,获得10
31秒前
传奇3应助开朗灵萱采纳,获得10
39秒前
Richard完成签到,获得积分10
41秒前
monica完成签到 ,获得积分10
52秒前
Jessica完成签到,获得积分10
59秒前
orixero应助飞常爱你哦采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
浮岫发布了新的文献求助10
1分钟前
浮岫完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
rebeycca发布了新的文献求助10
1分钟前
奋斗的马里奥完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
lei完成签到,获得积分20
3分钟前
跳跃紫真完成签到,获得积分10
3分钟前
CodeCraft应助lei采纳,获得10
3分钟前
大玉124完成签到 ,获得积分10
3分钟前
3分钟前
刘菲特1发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
yr应助科研通管家采纳,获得10
3分钟前
co完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439