Data-driven Seismic Waveform Inversion: A Study on the Robustness and Generalization

反演(地质) 计算机科学 波形 算法 反问题 合成数据 最大值和最小值 人工智能 地震学 地质学 数学 电信 构造学 数学分析 雷达
作者
Zhongping Zhang,Youzuo Lin
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.1809.10262
摘要

Acoustic- and elastic-waveform inversion is an important and widely used method to reconstruct subsurface velocity image. Waveform inversion is a typical non-linear and ill-posed inverse problem. Existing physics-driven computational methods for solving waveform inversion suffer from the cycle skipping and local minima issues, and not to mention solving waveform inversion is computationally expensive. In recent years, data-driven methods become a promising way to solve the waveform inversion problem. However, most deep learning frameworks suffer from generalization and over-fitting issue. In this paper, we developed a real-time data-driven technique and we call it VelocityGAN, to accurately reconstruct subsurface velocities. Our VelocityGAN is built on a generative adversarial network (GAN) and trained end-to-end to learn a mapping function from the raw seismic waveform data to the velocity image. Different from other encoder-decoder based data-driven seismic waveform inversion approaches, our VelocityGAN learns regularization from data and further impose the regularization to the generator so that inversion accuracy is improved. We further develop a transfer learning strategy based on VelocityGAN to alleviate the generalization issue. A series of experiments are conducted on the synthetic seismic reflection data to evaluate the effectiveness, efficiency, and generalization of VelocityGAN. We not only compare it with existing physics-driven approaches and data-driven frameworks but also conduct several transfer learning experiments. The experiment results show that VelocityGAN achieves state-of-the-art performance among the baselines and can improve the generalization results to some extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mao发布了新的文献求助10
1秒前
orixero应助RockRedfoo采纳,获得10
1秒前
在水一方应助LamChem采纳,获得10
2秒前
3秒前
5秒前
金籽完成签到,获得积分20
7秒前
草莓发布了新的文献求助10
9秒前
9秒前
一点点晚风完成签到,获得积分10
9秒前
9秒前
肥猫发布了新的文献求助10
10秒前
10秒前
10秒前
12秒前
13秒前
14秒前
LamChem发布了新的文献求助10
14秒前
LEE123发布了新的文献求助10
14秒前
15秒前
香蕉觅云应助xl采纳,获得10
15秒前
16秒前
17秒前
积极南珍完成签到,获得积分10
17秒前
科研通AI2S应助飞羽采纳,获得10
18秒前
18秒前
DBT发布了新的文献求助10
18秒前
Wizard完成签到,获得积分10
19秒前
19秒前
Owen应助RockRedfoo采纳,获得10
20秒前
20秒前
Yukikig发布了新的文献求助10
21秒前
21秒前
李健的小迷弟应助王小明采纳,获得30
21秒前
科目三应助小齐发文章采纳,获得10
21秒前
orixero应助过于喧嚣的孤独采纳,获得10
21秒前
小马甲应助胖胖不胖胖采纳,获得10
22秒前
timikk完成签到,获得积分10
23秒前
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443790
求助须知:如何正确求助?哪些是违规求助? 3039911
关于积分的说明 8978905
捐赠科研通 2728452
什么是DOI,文献DOI怎么找? 1496524
科研通“疑难数据库(出版商)”最低求助积分说明 691689
邀请新用户注册赠送积分活动 689221