Data-driven Seismic Waveform Inversion: A Study on the Robustness and Generalization

反演(地质) 计算机科学 波形 算法 反问题 合成数据 最大值和最小值 人工智能 地震学 地质学 数学 电信 数学分析 雷达 构造学
作者
Zhongping Zhang,Youzuo Lin
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.1809.10262
摘要

Acoustic- and elastic-waveform inversion is an important and widely used method to reconstruct subsurface velocity image. Waveform inversion is a typical non-linear and ill-posed inverse problem. Existing physics-driven computational methods for solving waveform inversion suffer from the cycle skipping and local minima issues, and not to mention solving waveform inversion is computationally expensive. In recent years, data-driven methods become a promising way to solve the waveform inversion problem. However, most deep learning frameworks suffer from generalization and over-fitting issue. In this paper, we developed a real-time data-driven technique and we call it VelocityGAN, to accurately reconstruct subsurface velocities. Our VelocityGAN is built on a generative adversarial network (GAN) and trained end-to-end to learn a mapping function from the raw seismic waveform data to the velocity image. Different from other encoder-decoder based data-driven seismic waveform inversion approaches, our VelocityGAN learns regularization from data and further impose the regularization to the generator so that inversion accuracy is improved. We further develop a transfer learning strategy based on VelocityGAN to alleviate the generalization issue. A series of experiments are conducted on the synthetic seismic reflection data to evaluate the effectiveness, efficiency, and generalization of VelocityGAN. We not only compare it with existing physics-driven approaches and data-driven frameworks but also conduct several transfer learning experiments. The experiment results show that VelocityGAN achieves state-of-the-art performance among the baselines and can improve the generalization results to some extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉完成签到,获得积分10
刚刚
刚刚
1秒前
美好焦发布了新的文献求助10
1秒前
文静的从菡完成签到,获得积分10
1秒前
科研通AI2S应助liuliu采纳,获得10
1秒前
爱静静应助缺粥采纳,获得80
2秒前
weiye1992完成签到,获得积分10
2秒前
苯环完成签到,获得积分10
2秒前
mss12138完成签到,获得积分0
3秒前
薛乎虚完成签到 ,获得积分10
5秒前
哎呀妈呀发布了新的文献求助10
5秒前
无语的怜梦完成签到,获得积分10
5秒前
kzz312发布了新的文献求助10
5秒前
杳鸢应助yi采纳,获得200
6秒前
甜蜜傲晴完成签到,获得积分10
6秒前
zycorner完成签到,获得积分10
6秒前
6秒前
荀代灵完成签到,获得积分10
7秒前
8秒前
愉快白亦完成签到,获得积分10
8秒前
8秒前
echo完成签到 ,获得积分10
9秒前
9秒前
美好焦完成签到,获得积分10
9秒前
麦子完成签到 ,获得积分10
9秒前
LC完成签到 ,获得积分10
10秒前
10秒前
难过的初柔应助paopao采纳,获得10
11秒前
zxcvb发布了新的文献求助30
11秒前
星辰大海应助tesla采纳,获得10
12秒前
madison发布了新的文献求助10
12秒前
zoey完成签到,获得积分10
12秒前
黄嘟嘟完成签到,获得积分10
12秒前
NICKPLZ完成签到,获得积分10
12秒前
小鬼完成签到,获得积分10
13秒前
WANGGE完成签到 ,获得积分10
13秒前
小巧凝丹完成签到,获得积分10
15秒前
15秒前
funny发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910