亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Excitons in 2D Organic–Inorganic Halide Perovskites

激子 化学物理 极化子 极化率 激发态 凝聚态物理 声子 格子(音乐) 材料科学 带隙 光致发光 比克西顿 化学 物理 光电子学 原子物理学 电子 分子 量子力学 有机化学 声学
作者
Catherine M. Mauck,William A. Tisdale
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (4): 380-393 被引量:181
标识
DOI:10.1016/j.trechm.2019.04.003
摘要

Two-dimensional layered perovskites (2DLPs) are solution-processed semiconductors that form natural quantum wells with high exciton binding energies. Excitonic properties can be tuned in multiple ways, including: electronic bandgap, exciton binding energy, and exciton lifetime. Exciton dynamics in 2DLPs are complex due to the hybrid organic–inorganic nature of the polarizable, relatively soft lattice. Spectroscopic signatures indicate strong exciton–lattice interactions through the formation of polarons, which are electronic excitations dressed in the surrounding deformation of the polar lattice. Exciton coupling to lattice motion in the form of local reorganization or optical and acoustic phonons is not yet fully understood. Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on the material composition. In this article, we review current understanding of exciton photophysics in layered perovskites and highlight the many ways in which their excitonic properties can be tuned. In particular, we focus on the coupling of exciton dynamics to lattice motion and local distortions of the soft and deformable hybrid lattice. These effects lead to complex excited-state dynamics, presenting new opportunities for design of optoelectronic materials and exploration of fundamental photophysics in quantum confined systems. Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on the material composition. In this article, we review current understanding of exciton photophysics in layered perovskites and highlight the many ways in which their excitonic properties can be tuned. In particular, we focus on the coupling of exciton dynamics to lattice motion and local distortions of the soft and deformable hybrid lattice. These effects lead to complex excited-state dynamics, presenting new opportunities for design of optoelectronic materials and exploration of fundamental photophysics in quantum confined systems. in a semiconductor, the energy difference between an electron in the highest energy level of the valence band and the lowest energy level of the conduction band; also referred to as the quasiparticle gap, Eg. a change in the electronic bandgap energy of a semiconductor following photoexcitation. In 2D semiconductors, a high density of photogenerated carriers will screen repulsive Coulomb interactions between charge carriers of the same sign, leading to a net decrease in the electronic bandgap energy. minimum energy required to ionize a bound electron–hole pair from its lowest energy eigenstate into uncorrelated free charge carrier states. The exciton binding energy, Eb, is usually given a positive sign for net attractive interaction. a measure of the maximum probability density of the Coulomb interaction between an electron and hole in an exciton. This value can serve as a proxy for the size of the exciton in a given material. the splitting of excitonic states into multiple sublevels, characterized by their energetic spacing, degeneracy, oscillator strength, and spin characteristics. the extent to which an exciton is delocalized will determine whether it is of Frenkel or Wannier character, based on how the excitonic electron–hole Coulomb interaction is screened by its surrounding dielectric environment. In a high-dielectric material, the attractive Coulomb interaction is well-screened and the exciton is Wannier-like. In this case the exciton has a large Bohr radius and delocalizes over many molecules or unit cells. However, in a low-dielectric material, the electron and hole are tightly bound because the Coulomb interaction is poorly screened and the exciton is Frenkel-like. The exciton Bohr radius is small and the exciton is highly localized to a single molecule or unit cell. a metric of the fluorescence efficiency of a material, equivalent to the number of photons emitted divided by the number of photons absorbed. a charge carrier that has created its own potential well via structural deformation of the surrounding lattice. A large polaron extends over multiple unit cells of the structural lattice and behaves like a free charge carrier, but with a heavier effective mass and reduced scattering. A small polaron is localized to a single structural site and moves by thermally activated site-to-site hopping. in a material whose dimensions are smaller than its exciton Bohr radius, an excitation will be confined in space, causing its energy levels to be quantized (i.e., discrete). a material constant that determines the magnitude by which spin-polarized bands are offset from the zone center (k = 0) in noncentrosymmetric compounds exhibiting strong spin-orbit coupling. similar to a small polaron, a self-trapped exciton is an electron–hole pair that has become localized to a single lattice site through displacement of nearby ions from their equilibrium positions. interaction between an electron’s spin and its orbital angular momentum that breaks state degeneracy. For heavy atoms such as lead, this relativistic effect is significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liiiiiiiiii完成签到,获得积分10
1秒前
研友_xnE65Z完成签到 ,获得积分10
38秒前
合适元珊发布了新的文献求助20
43秒前
ZanE完成签到,获得积分10
48秒前
甜蜜发带完成签到 ,获得积分10
1分钟前
优秀的dd完成签到 ,获得积分10
1分钟前
合适元珊完成签到,获得积分10
1分钟前
可爱的函函应助miyamoto采纳,获得10
1分钟前
shutong完成签到,获得积分10
1分钟前
合适元珊发布了新的文献求助10
1分钟前
1分钟前
爱听歌台灯完成签到,获得积分10
1分钟前
1分钟前
miyamoto发布了新的文献求助10
1分钟前
FashionBoy应助HUNG采纳,获得10
1分钟前
李爱国应助席成风采纳,获得10
1分钟前
stephanie_han完成签到,获得积分10
2分钟前
2分钟前
爱听歌台灯关注了科研通微信公众号
2分钟前
席成风发布了新的文献求助10
2分钟前
2分钟前
科研通AI6应助stand采纳,获得10
2分钟前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
2分钟前
2分钟前
杨锐发布了新的文献求助10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
彩虹儿应助科研通管家采纳,获得10
2分钟前
Hayat应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
xmsyq完成签到 ,获得积分10
2分钟前
Orange应助百里幻竹采纳,获得10
3分钟前
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
DD完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
new1完成签到,获得积分10
4分钟前
GGBond完成签到 ,获得积分10
4分钟前
stand发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910042
求助须知:如何正确求助?哪些是违规求助? 4186051
关于积分的说明 12998976
捐赠科研通 3953294
什么是DOI,文献DOI怎么找? 2167874
邀请新用户注册赠送积分活动 1186317
关于科研通互助平台的介绍 1093347