Excitons in 2D Organic–Inorganic Halide Perovskites

激子 化学物理 极化子 极化率 激发态 凝聚态物理 声子 格子(音乐) 材料科学 带隙 光致发光 比克西顿 化学 物理 光电子学 原子物理学 电子 分子 量子力学 有机化学 声学
作者
Catherine M. Mauck,William A. Tisdale
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (4): 380-393 被引量:181
标识
DOI:10.1016/j.trechm.2019.04.003
摘要

Two-dimensional layered perovskites (2DLPs) are solution-processed semiconductors that form natural quantum wells with high exciton binding energies. Excitonic properties can be tuned in multiple ways, including: electronic bandgap, exciton binding energy, and exciton lifetime. Exciton dynamics in 2DLPs are complex due to the hybrid organic–inorganic nature of the polarizable, relatively soft lattice. Spectroscopic signatures indicate strong exciton–lattice interactions through the formation of polarons, which are electronic excitations dressed in the surrounding deformation of the polar lattice. Exciton coupling to lattice motion in the form of local reorganization or optical and acoustic phonons is not yet fully understood. Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on the material composition. In this article, we review current understanding of exciton photophysics in layered perovskites and highlight the many ways in which their excitonic properties can be tuned. In particular, we focus on the coupling of exciton dynamics to lattice motion and local distortions of the soft and deformable hybrid lattice. These effects lead to complex excited-state dynamics, presenting new opportunities for design of optoelectronic materials and exploration of fundamental photophysics in quantum confined systems. Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on the material composition. In this article, we review current understanding of exciton photophysics in layered perovskites and highlight the many ways in which their excitonic properties can be tuned. In particular, we focus on the coupling of exciton dynamics to lattice motion and local distortions of the soft and deformable hybrid lattice. These effects lead to complex excited-state dynamics, presenting new opportunities for design of optoelectronic materials and exploration of fundamental photophysics in quantum confined systems. in a semiconductor, the energy difference between an electron in the highest energy level of the valence band and the lowest energy level of the conduction band; also referred to as the quasiparticle gap, Eg. a change in the electronic bandgap energy of a semiconductor following photoexcitation. In 2D semiconductors, a high density of photogenerated carriers will screen repulsive Coulomb interactions between charge carriers of the same sign, leading to a net decrease in the electronic bandgap energy. minimum energy required to ionize a bound electron–hole pair from its lowest energy eigenstate into uncorrelated free charge carrier states. The exciton binding energy, Eb, is usually given a positive sign for net attractive interaction. a measure of the maximum probability density of the Coulomb interaction between an electron and hole in an exciton. This value can serve as a proxy for the size of the exciton in a given material. the splitting of excitonic states into multiple sublevels, characterized by their energetic spacing, degeneracy, oscillator strength, and spin characteristics. the extent to which an exciton is delocalized will determine whether it is of Frenkel or Wannier character, based on how the excitonic electron–hole Coulomb interaction is screened by its surrounding dielectric environment. In a high-dielectric material, the attractive Coulomb interaction is well-screened and the exciton is Wannier-like. In this case the exciton has a large Bohr radius and delocalizes over many molecules or unit cells. However, in a low-dielectric material, the electron and hole are tightly bound because the Coulomb interaction is poorly screened and the exciton is Frenkel-like. The exciton Bohr radius is small and the exciton is highly localized to a single molecule or unit cell. a metric of the fluorescence efficiency of a material, equivalent to the number of photons emitted divided by the number of photons absorbed. a charge carrier that has created its own potential well via structural deformation of the surrounding lattice. A large polaron extends over multiple unit cells of the structural lattice and behaves like a free charge carrier, but with a heavier effective mass and reduced scattering. A small polaron is localized to a single structural site and moves by thermally activated site-to-site hopping. in a material whose dimensions are smaller than its exciton Bohr radius, an excitation will be confined in space, causing its energy levels to be quantized (i.e., discrete). a material constant that determines the magnitude by which spin-polarized bands are offset from the zone center (k = 0) in noncentrosymmetric compounds exhibiting strong spin-orbit coupling. similar to a small polaron, a self-trapped exciton is an electron–hole pair that has become localized to a single lattice site through displacement of nearby ions from their equilibrium positions. interaction between an electron’s spin and its orbital angular momentum that breaks state degeneracy. For heavy atoms such as lead, this relativistic effect is significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助明亮迎丝采纳,获得10
刚刚
刚刚
1秒前
东郭聪健发布了新的文献求助30
1秒前
勤恳的雨文完成签到,获得积分10
3秒前
3秒前
啦啦啦发布了新的文献求助10
4秒前
Bob完成签到,获得积分10
5秒前
SCC完成签到,获得积分10
6秒前
6秒前
maomaohappy7发布了新的文献求助10
6秒前
拉长的博超完成签到,获得积分10
6秒前
粉面菜蛋发布了新的文献求助10
7秒前
陈睿毅发布了新的文献求助10
8秒前
路哈哈完成签到,获得积分10
8秒前
9秒前
RAY完成签到,获得积分10
9秒前
10秒前
星辰大海应助Zetlynn采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
CCL应助科研通管家采纳,获得40
11秒前
yookia应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
万能图书馆应助ttsong2采纳,获得10
11秒前
11秒前
11秒前
12秒前
sdfdzhang完成签到 ,获得积分0
12秒前
善学以致用应助McbxM采纳,获得10
13秒前
我是老大应助lueluelue采纳,获得10
13秒前
Alvin发布了新的文献求助10
14秒前
15秒前
liwj完成签到,获得积分10
16秒前
12345678发布了新的文献求助10
16秒前
wuming完成签到,获得积分10
17秒前
英姑应助奋斗的紫易采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719