Numerical simulation of enhancing coalbed methane recovery by injecting CO2 with heat injection

煤层气 流离失所(心理学) 强化煤层气回收 材料科学 机械 传热 甲烷 半径 石油工程 热力学 化学 煤矿开采 工程类 废物管理 物理 心理治疗师 有机化学 心理学 计算机科学 计算机安全
作者
Huihuang Fang,Shuxun Sang,Shiqi Liu
出处
期刊:Petroleum Science [Elsevier]
卷期号:16 (1): 32-43 被引量:46
标识
DOI:10.1007/s12182-018-0291-5
摘要

The technology used to enhance coalbed methane (CBM) recovery by injecting CO2 (CO2-ECBM) with heat, combining heat injection with CO2 injection, is still in its infancy; therefore, theoretical studies of this CO2-ECBM technology should be perused. First, the coupling equations of the diffusion–adsorption–seepage–heat transfer fields of gas are established. The displacement processes under different pressures and temperatures are simulated by COMSOL. Finally, the displacement effects, a comparison of the CO2 storage capacity with the CH4 output and the effective influencing radius of CO2 injection are analyzed and discussed. The results show that (1) the displacement pressure and temperature are two key factors influencing the CH4 output and the CO2 storage capacity, and the increase in the CO2 storage capacity is more sensitive to temperature and pressure than the CH4 output. (2) The gas flow direction is from the injection hole to the discharge hole during the displacement process, and the regions with high velocity are concentrated at the injection hole and the discharge hole. (3) A reduction in the CH4 concentration and an increase in the CO2 concentration are obvious during the displacement process. (4) The effective influencing radius of injecting CO2 with heat increases with the increase in time and pressure. The relationship between the effective influencing radius and the injection time of CO2 has a power exponential function, and there is a linear relationship between the functional coefficient and the injection pressure of CO2. This numerical simulation study on enhancing CBM recovery by injecting CO2 with heat can further promote the implementation of CO2-ECBM project in deep coal seams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助彭彭采纳,获得10
1秒前
卡卡完成签到 ,获得积分10
1秒前
科目三应助季夏采纳,获得10
2秒前
2秒前
今后应助激动的一手采纳,获得10
2秒前
许中原完成签到,获得积分10
2秒前
无限的幻灵完成签到,获得积分10
2秒前
3秒前
整齐路灯完成签到,获得积分10
3秒前
紧张的梦岚应助跳跃乘风采纳,获得20
3秒前
简单水杯完成签到 ,获得积分10
3秒前
大胆的尔岚完成签到,获得积分10
4秒前
4秒前
Sene完成签到,获得积分10
4秒前
哈哈大笑发布了新的文献求助10
4秒前
叶飞荷发布了新的文献求助10
5秒前
5秒前
竹筏过海应助嘎啦嘎嘎啦采纳,获得40
5秒前
5秒前
123456完成签到 ,获得积分10
6秒前
6秒前
7秒前
乐乐乐乐乐完成签到,获得积分10
7秒前
Q.curiosity完成签到,获得积分10
8秒前
丘比特应助我行我素采纳,获得10
8秒前
ClaudiaCY完成签到,获得积分10
8秒前
8秒前
科研天才完成签到,获得积分10
9秒前
GHOST发布了新的文献求助10
9秒前
9秒前
10秒前
谢家宝树发布了新的文献求助10
10秒前
HEIKU应助Ying采纳,获得10
11秒前
Zzz完成签到,获得积分10
11秒前
LC发布了新的文献求助20
11秒前
刘怀蕊完成签到,获得积分10
12秒前
12秒前
LLL发布了新的文献求助10
12秒前
跳跃乘风完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762