Highly active WO3@anatase-SiO2 aerogel for solar-light-driven phenanthrene degradation: Mechanism insight and toxicity assessment

锐钛矿 光催化 吸附 化学工程 材料科学 带隙 电子受体 降级(电信) 化学 光化学 环境化学 催化作用 光电子学 有机化学 工程类 电信 计算机科学
作者
Zhengqing Cai,Xiaodi Hao,Xianbo Sun,Penghui Du,Wen Liu,Jie Fu
出处
期刊:Water Research [Elsevier]
卷期号:162: 369-382 被引量:329
标识
DOI:10.1016/j.watres.2019.06.017
摘要

The global energy crisis and water pollution drive the researchers to develop highly effective and less energy intensive water purification technologies. In this study, a highly active WO3@TiO2–SiO2 nanocomposite was synthesized and used for photocatalytic degradation of persistent organic pollutants under simulated solar light. The optimum WO3@TiO2–SiO2 prepared with 2 wt% WO3 loading and calcination at 800 °C exhibited higher photocatalytic activity, as the rate constant (k1) for phenanthrene degradation was ∼7.1 times of that for the commercial TiO2 (P25). The extremely large specific surface area (>400 m2/g) of WO3@TiO2–SiO2 afforded it with enlarged pollutants adsorption performance and abundant active surface sites. The heterojunction of anatase with SiO2 as well as loading of WO3 decreased the band gap energy (Eg) of TiO2, which extended the utilization spectrum of TiO2 to visible region. Formation of Ti–O–Si band indicated the excess charges can cause Brønsted acidity due to the absorption of protons to compensate the charges. Moreover, the migration of photo-excited electrons from the conduction band of anatase to WO3 and holes in the opposite direction restrained the electron-hole recombination. The photocatalytic degradation mechanism and pathway for phenanthrene degradation were proposed based on experimental analysis and density functional theory (DFT) calculation, and the toxicities of the degradation intermediates were evaluated by quantitative structure–activity relationship (QSAR) analysis. WO3@TiO2–SiO2 also showed good separation (settling) performance and high stability. Our work is expected to offer new insight into the photocatalytic mechanism for WO3, TiO2 and SiO2 based heterojunctions, and rational design and synthesis of highly efficient photocatalysts for environmental application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助努力努力采纳,获得10
1秒前
zhoushishan发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
4秒前
aiwdb发布了新的文献求助50
4秒前
5秒前
Nemo发布了新的文献求助10
5秒前
wbh完成签到 ,获得积分10
6秒前
全宝林完成签到,获得积分10
6秒前
倒霉的芒果完成签到 ,获得积分10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
北地风情应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
酷酷三问完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
9秒前
情怀应助Janmy采纳,获得10
11秒前
柒末仙发布了新的文献求助10
12秒前
12秒前
翻身不当咸鱼完成签到 ,获得积分10
15秒前
浮游应助酷酷三问采纳,获得10
15秒前
Nemo完成签到,获得积分10
15秒前
浮游应助方梦坤采纳,获得10
16秒前
16秒前
甜甜的寻真完成签到,获得积分10
18秒前
1746435297发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426016
求助须知:如何正确求助?哪些是违规求助? 4539733
关于积分的说明 14170256
捐赠科研通 4457563
什么是DOI,文献DOI怎么找? 2444607
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1412955