Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis

计算机科学 人工智能 过程(计算) 机器学习 药物发现 化学空间 虚拟筛选 生化工程 化学 工程类 程序设计语言 生物化学
作者
Alexander L. Button,Daniel Merk,Jan A. Hiss,Gisbert Schneider
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (7): 307-315 被引量:49
标识
DOI:10.1038/s42256-019-0067-7
摘要

Chemical creativity in the design of new synthetic chemical entities (NCEs) with drug-like properties has been the domain of medicinal chemists. Here, we explore the capability of a chemistry-savvy machine intelligence to generate synthetically accessible molecules. DINGOS (design of innovative NCEs generated by optimization strategies) is a virtual assembly method that combines a rule-based approach with a machine learning model trained on successful synthetic routes described in chemical patent literature. This unique combination enables a balance between ligand-similarity-based generation of innovative compounds by scaffold hopping and the forward-synthetic feasibility of the designs. In a prospective proof-of-concept application, DINGOS successfully produced sets of de novo designs for four approved drugs that were in agreement with the desired structural and physicochemical properties. Target prediction indicated more than 50% of the designs to be biologically active. Four selected computer-generated compounds were successfully synthesized in accordance with the synthetic route proposed by DINGOS. The results of this study demonstrate the capability of machine learning models to capture implicit chemical knowledge from chemical reaction data and suggest feasible syntheses of new chemical matter. Artificial intelligence approaches can aid medicinal chemists to creatively look for new chemical entities with drug-like properties. A rule-based approach combined with a machine learning model was trained on successful synthetic routes described in chemical patent literature. This process produced computer-generated compounds that mimic known medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI完成签到,获得积分10
刚刚
Ava应助冷傲的双双采纳,获得10
刚刚
looi发布了新的文献求助30
1秒前
下一块蛋糕完成签到,获得积分10
1秒前
1秒前
1秒前
大模型应助牙线棒棒哒采纳,获得10
2秒前
3秒前
愿如大卫完成签到,获得积分10
3秒前
3秒前
华仔应助punker采纳,获得10
3秒前
Yuanyuan发布了新的文献求助10
4秒前
4秒前
扬大小汤发布了新的文献求助10
4秒前
Delia发布了新的文献求助10
4秒前
LSY发布了新的文献求助10
4秒前
bkagyin应助Elpppp采纳,获得10
5秒前
wanci应助锌镉鸟采纳,获得10
6秒前
7秒前
mwiyi完成签到,获得积分10
7秒前
Qi应助自由的自中采纳,获得10
8秒前
dada完成签到 ,获得积分10
8秒前
最菜研究生天花板完成签到,获得积分10
8秒前
彭于晏应助扬大小汤采纳,获得10
9秒前
9秒前
9秒前
安东晨晨完成签到,获得积分10
10秒前
mwiyi发布了新的文献求助10
10秒前
完美世界应助yanhuazi采纳,获得10
11秒前
123完成签到,获得积分10
11秒前
Lucas应助LSY采纳,获得10
11秒前
李Sir发布了新的文献求助10
12秒前
12秒前
12秒前
勤劳春天发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
研友_nV21Vn发布了新的文献求助10
15秒前
wency完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560954
求助须知:如何正确求助?哪些是违规求助? 3134721
关于积分的说明 9409376
捐赠科研通 2834952
什么是DOI,文献DOI怎么找? 1558345
邀请新用户注册赠送积分活动 728095
科研通“疑难数据库(出版商)”最低求助积分说明 716686