重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Application of a new hybrid particle swarm optimization-mixed kernels function-based support vector machine model for reservoir porosity prediction: A case study in Jacksonburg-Stringtown oil field, West Virginia, USA

支持向量机 粒子群优化 多孔性 径向基函数 人工神经网络 算法 核(代数) 最小二乘支持向量机 感知器 多层感知器 计算机科学 人工智能 数学 工程类 岩土工程 组合数学
作者
Zhao Zhi,Timothy R. Carr
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:7 (1): T97-T112 被引量:21
标识
DOI:10.1190/int-2018-0093.1
摘要

Porosity is a fundamental property that characterizes the storage capability of fluid and gas-bearing formations in a reservoir. An accurate porosity value can be measured from core samples in the laboratory; however, core analysis is expensive and time consuming. Well-log data can be used to calculate porosity, but the availability of log suites is often limited in mature fields. Therefore, robust porosity prediction requires integration of core-measured porosity with available well-log suites to control for changes in lithology and fluid content. A support vector machine (SVM) model with mixed kernel function (MKF) is used to construct the relationship between limited conventional well-log suites and sparse core data. Porosity is the desired output, and two conventional well-log responses (gamma ray [GR] and bulk density) and three well-log-derived parameters (the slope of GR, the slope of density, and [Formula: see text]) are input parameters. A global stochastic searching algorithm, particle swarm optimization (PSO), is applied to improve the efficiency of locating the appropriate values of five control parameters in MKF-SVM model. The results of SVM with different traditional kernel functions were compared, and the MKF-SVM model provided an improvement over the traditional SVM model. To confirm the advantage of the hybrid PSO-MKF-SVM model, the results from three models: (1) radial basis function (RBF)-based least-squares SVM, (2) multilayer perceptron artificial neural network (ANN), and (3) RBF ANN, are compared with the result of the hybrid PSO-MKF-SVM model. The results indicate that the hybrid PSO-MKF-SVM model improves porosity prediction with the highest correlation coefficient ([Formula: see text] of 0.9560), the highest coefficient of determination ([Formula: see text] of 0.9140), the lowest root-mean-square error (1.6505), average absolute error value (1.4050), and maximum absolute error (2.717).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
我是老大应助旋风狗超人采纳,获得10
刚刚
深情安青应助Cheung采纳,获得10
刚刚
1秒前
1秒前
1秒前
科研事事顺完成签到,获得积分10
1秒前
2秒前
CCCr发布了新的文献求助10
2秒前
科研通AI2S应助xuewei采纳,获得10
2秒前
饭饭大王完成签到,获得积分10
2秒前
大芳儿发布了新的文献求助10
3秒前
务实玫瑰发布了新的文献求助10
3秒前
3秒前
juju发布了新的文献求助10
3秒前
ll发布了新的文献求助10
3秒前
Loki发布了新的文献求助10
3秒前
余生发布了新的文献求助10
3秒前
3秒前
4秒前
可爱的函函应助刘老板采纳,获得10
5秒前
NexusExplorer应助青年才俊采纳,获得10
5秒前
5秒前
CodeCraft应助jz采纳,获得10
5秒前
正直依风完成签到,获得积分10
5秒前
科研通AI6应助yunsww采纳,获得10
5秒前
Purplesky完成签到,获得积分10
6秒前
梓安发布了新的文献求助10
7秒前
7秒前
菲菲公主完成签到 ,获得积分10
8秒前
研友_ZlxK6Z发布了新的文献求助10
8秒前
务实三颜发布了新的文献求助10
8秒前
8秒前
Aimee发布了新的文献求助10
9秒前
9秒前
9秒前
CCCr完成签到,获得积分10
9秒前
科研通AI6应助dfsdf采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567