已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of a new hybrid particle swarm optimization-mixed kernels function-based support vector machine model for reservoir porosity prediction: A case study in Jacksonburg-Stringtown oil field, West Virginia, USA

支持向量机 粒子群优化 多孔性 径向基函数 人工神经网络 算法 核(代数) 最小二乘支持向量机 感知器 多层感知器 计算机科学 人工智能 数学 工程类 岩土工程 组合数学
作者
Zhao Zhi,Timothy R. Carr
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:7 (1): T97-T112 被引量:21
标识
DOI:10.1190/int-2018-0093.1
摘要

Porosity is a fundamental property that characterizes the storage capability of fluid and gas-bearing formations in a reservoir. An accurate porosity value can be measured from core samples in the laboratory; however, core analysis is expensive and time consuming. Well-log data can be used to calculate porosity, but the availability of log suites is often limited in mature fields. Therefore, robust porosity prediction requires integration of core-measured porosity with available well-log suites to control for changes in lithology and fluid content. A support vector machine (SVM) model with mixed kernel function (MKF) is used to construct the relationship between limited conventional well-log suites and sparse core data. Porosity is the desired output, and two conventional well-log responses (gamma ray [GR] and bulk density) and three well-log-derived parameters (the slope of GR, the slope of density, and [Formula: see text]) are input parameters. A global stochastic searching algorithm, particle swarm optimization (PSO), is applied to improve the efficiency of locating the appropriate values of five control parameters in MKF-SVM model. The results of SVM with different traditional kernel functions were compared, and the MKF-SVM model provided an improvement over the traditional SVM model. To confirm the advantage of the hybrid PSO-MKF-SVM model, the results from three models: (1) radial basis function (RBF)-based least-squares SVM, (2) multilayer perceptron artificial neural network (ANN), and (3) RBF ANN, are compared with the result of the hybrid PSO-MKF-SVM model. The results indicate that the hybrid PSO-MKF-SVM model improves porosity prediction with the highest correlation coefficient ([Formula: see text] of 0.9560), the highest coefficient of determination ([Formula: see text] of 0.9140), the lowest root-mean-square error (1.6505), average absolute error value (1.4050), and maximum absolute error (2.717).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棠真完成签到 ,获得积分0
刚刚
小草blue完成签到,获得积分10
刚刚
xumengsuo发布了新的文献求助10
1秒前
2秒前
文艺丹琴完成签到,获得积分10
2秒前
碧蓝的冰绿完成签到,获得积分20
2秒前
4秒前
5秒前
爻解完成签到,获得积分10
6秒前
keke发布了新的文献求助30
7秒前
xumengsuo完成签到,获得积分10
7秒前
绺妙完成签到,获得积分10
10秒前
司念者你发布了新的文献求助10
10秒前
田様应助姚琛采纳,获得30
11秒前
12秒前
平淡的雁开完成签到 ,获得积分10
13秒前
raziel完成签到,获得积分10
13秒前
13秒前
14秒前
芋芋发布了新的文献求助10
15秒前
哭泣猫咪发布了新的文献求助10
17秒前
旋律发布了新的文献求助10
18秒前
19秒前
raziel发布了新的文献求助10
19秒前
20秒前
iNk应助ruanyh采纳,获得20
23秒前
zhixin发布了新的文献求助10
23秒前
哭泣猫咪完成签到,获得积分10
24秒前
深情安青应助小白采纳,获得10
25秒前
吴未完成签到 ,获得积分10
28秒前
芋芋完成签到,获得积分10
30秒前
31秒前
36秒前
执着的冬瓜完成签到 ,获得积分10
41秒前
ll应助JZY采纳,获得10
41秒前
小白发布了新的文献求助10
41秒前
41秒前
41秒前
42秒前
牛奶秋刀鱼完成签到 ,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968110
求助须知:如何正确求助?哪些是违规求助? 3513080
关于积分的说明 11166497
捐赠科研通 3248293
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629