An Improved Lightweight Real-Time Detection Algorithm Based on the Edge Computing Platform for UAV Images

失败 计算机科学 算法 还原(数学) 目标检测 最小边界框 GSM演进的增强数据速率 人工智能 实时计算 图像(数学) 模式识别(心理学) 数学 几何学 并行计算
作者
Lijia Cao,Pinde Song,Yongchao Wang,Yang Yang,Baoyu Peng
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 2274-2274 被引量:5
标识
DOI:10.3390/electronics12102274
摘要

Unmanned aerial vehicle (UAV) image detection algorithms are critical in performing military countermeasures and disaster search and rescue. The state-of-the-art object detection algorithm known as you only look once (YOLO) is widely used for detecting UAV images. However, it faces challenges such as high floating-point operations (FLOPs), redundant parameters, slow inference speed, and poor performance in detecting small objects. To address the above issues, an improved, lightweight, real-time detection algorithm was proposed based on the edge computing platform for UAV images. In the presented method, MobileNetV3 was used as the YOLOv5 backbone network to reduce the numbers of parameters and FLOPs. To enhance the feature extraction ability of MobileNetV3, the efficient channel attention (ECA) attention mechanism was introduced into MobileNetV3. Furthermore, in order to improve the detection ability for small objects, an extra prediction head was introduced into the neck structure, and two kinds of neck structures with different parameter scales were designed to meet the requirements of different embedded devices. Finally, the FocalEIoU loss function was introduced into YOLOv5 to accelerate bounding box regression and improve the localization accuracy of the algorithm. To validate the performance of the proposed improved algorithm, we compared our algorithm with other algorithms in the VisDrone-Det2021 dataset. The results showed that compared with YOLOv5s, MELF-YOLOv5-S achieved a 51.4% reduction in the number of parameters and a 38.6% decrease in the number of FLOPs. MELF-YOLOv5-L had 87.4% and 47.4% fewer parameters and FLOPs, respectively, and achieved higher detection accuracy than YOLOv5l.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tuniverse_发布了新的文献求助10
刚刚
小池同学发布了新的文献求助10
刚刚
从容雅柏完成签到,获得积分10
刚刚
1秒前
1秒前
xht发布了新的文献求助10
2秒前
摸鱼帝王完成签到,获得积分10
2秒前
2秒前
饱饱完成签到,获得积分10
2秒前
2秒前
zss发布了新的文献求助10
3秒前
3秒前
3秒前
夏召庆发布了新的文献求助10
4秒前
健身哥发布了新的文献求助10
5秒前
6秒前
小池同学完成签到,获得积分10
6秒前
从容雅柏发布了新的文献求助10
6秒前
6秒前
Propitious完成签到 ,获得积分10
7秒前
麻祖完成签到 ,获得积分10
7秒前
千空发布了新的文献求助10
7秒前
小伍完成签到,获得积分10
7秒前
suiyi发布了新的文献求助10
7秒前
Orange应助zlf采纳,获得10
8秒前
szj发布了新的文献求助10
8秒前
陈真完成签到,获得积分10
8秒前
赖林完成签到,获得积分10
8秒前
一个酸葡萄干完成签到,获得积分10
9秒前
逻辑猫完成签到,获得积分10
9秒前
10秒前
10秒前
SciGPT应助努力采纳,获得10
10秒前
11秒前
无所吊谓发布了新的文献求助10
11秒前
勤恳洙应助alive采纳,获得10
11秒前
xiaotian发布了新的文献求助10
12秒前
wyi发布了新的文献求助10
12秒前
今天发CNS了嘛完成签到,获得积分10
12秒前
风中的外套完成签到,获得积分10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205400
求助须知:如何正确求助?哪些是违规求助? 4384092
关于积分的说明 13652042
捐赠科研通 4242237
什么是DOI,文献DOI怎么找? 2327262
邀请新用户注册赠送积分活动 1325047
关于科研通互助平台的介绍 1277269