An Improved Lightweight Real-Time Detection Algorithm Based on the Edge Computing Platform for UAV Images

失败 计算机科学 算法 还原(数学) 目标检测 最小边界框 GSM演进的增强数据速率 人工智能 实时计算 图像(数学) 模式识别(心理学) 数学 几何学 并行计算
作者
Lijia Cao,Pinde Song,Yongchao Wang,Yang Yang,Baoyu Peng
出处
期刊:Electronics [MDPI AG]
卷期号:12 (10): 2274-2274 被引量:5
标识
DOI:10.3390/electronics12102274
摘要

Unmanned aerial vehicle (UAV) image detection algorithms are critical in performing military countermeasures and disaster search and rescue. The state-of-the-art object detection algorithm known as you only look once (YOLO) is widely used for detecting UAV images. However, it faces challenges such as high floating-point operations (FLOPs), redundant parameters, slow inference speed, and poor performance in detecting small objects. To address the above issues, an improved, lightweight, real-time detection algorithm was proposed based on the edge computing platform for UAV images. In the presented method, MobileNetV3 was used as the YOLOv5 backbone network to reduce the numbers of parameters and FLOPs. To enhance the feature extraction ability of MobileNetV3, the efficient channel attention (ECA) attention mechanism was introduced into MobileNetV3. Furthermore, in order to improve the detection ability for small objects, an extra prediction head was introduced into the neck structure, and two kinds of neck structures with different parameter scales were designed to meet the requirements of different embedded devices. Finally, the FocalEIoU loss function was introduced into YOLOv5 to accelerate bounding box regression and improve the localization accuracy of the algorithm. To validate the performance of the proposed improved algorithm, we compared our algorithm with other algorithms in the VisDrone-Det2021 dataset. The results showed that compared with YOLOv5s, MELF-YOLOv5-S achieved a 51.4% reduction in the number of parameters and a 38.6% decrease in the number of FLOPs. MELF-YOLOv5-L had 87.4% and 47.4% fewer parameters and FLOPs, respectively, and achieved higher detection accuracy than YOLOv5l.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大樗完成签到,获得积分10
2秒前
研友_Z72jyn发布了新的文献求助10
2秒前
2秒前
3秒前
望常桑完成签到 ,获得积分10
3秒前
夜之樱花完成签到,获得积分10
3秒前
hdc12138发布了新的文献求助10
5秒前
诸葛翼德完成签到,获得积分10
5秒前
安详的梦旋完成签到,获得积分10
5秒前
单纯的易文完成签到 ,获得积分10
6秒前
6秒前
yrma发布了新的文献求助10
7秒前
活泼山雁完成签到,获得积分10
7秒前
XPR完成签到 ,获得积分10
7秒前
温暖草莓完成签到,获得积分10
7秒前
zai发布了新的文献求助10
9秒前
9秒前
今天不学习明天变垃圾完成签到,获得积分10
11秒前
umil完成签到 ,获得积分10
11秒前
11秒前
TT完成签到,获得积分10
12秒前
hdc12138完成签到,获得积分10
13秒前
yrma完成签到,获得积分10
14秒前
狮子座完成签到 ,获得积分10
14秒前
小蘑菇应助大樗采纳,获得10
15秒前
TT发布了新的文献求助10
15秒前
16秒前
zai完成签到,获得积分20
16秒前
17秒前
发发发财发布了新的文献求助10
18秒前
XPR发布了新的文献求助10
21秒前
23秒前
阿布完成签到,获得积分10
23秒前
23秒前
Kerwin发布了新的文献求助20
25秒前
Accepted应助XPR采纳,获得10
25秒前
26秒前
快乐的慕灵完成签到 ,获得积分10
26秒前
陶杨杨完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162652
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900951
捐赠科研通 2473107
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175