An Improved Lightweight Real-Time Detection Algorithm Based on the Edge Computing Platform for UAV Images

失败 计算机科学 算法 还原(数学) 目标检测 最小边界框 GSM演进的增强数据速率 人工智能 实时计算 图像(数学) 模式识别(心理学) 数学 几何学 并行计算
作者
Lijia Cao,Pinde Song,Yongchao Wang,Yang Yang,Baoyu Peng
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 2274-2274 被引量:5
标识
DOI:10.3390/electronics12102274
摘要

Unmanned aerial vehicle (UAV) image detection algorithms are critical in performing military countermeasures and disaster search and rescue. The state-of-the-art object detection algorithm known as you only look once (YOLO) is widely used for detecting UAV images. However, it faces challenges such as high floating-point operations (FLOPs), redundant parameters, slow inference speed, and poor performance in detecting small objects. To address the above issues, an improved, lightweight, real-time detection algorithm was proposed based on the edge computing platform for UAV images. In the presented method, MobileNetV3 was used as the YOLOv5 backbone network to reduce the numbers of parameters and FLOPs. To enhance the feature extraction ability of MobileNetV3, the efficient channel attention (ECA) attention mechanism was introduced into MobileNetV3. Furthermore, in order to improve the detection ability for small objects, an extra prediction head was introduced into the neck structure, and two kinds of neck structures with different parameter scales were designed to meet the requirements of different embedded devices. Finally, the FocalEIoU loss function was introduced into YOLOv5 to accelerate bounding box regression and improve the localization accuracy of the algorithm. To validate the performance of the proposed improved algorithm, we compared our algorithm with other algorithms in the VisDrone-Det2021 dataset. The results showed that compared with YOLOv5s, MELF-YOLOv5-S achieved a 51.4% reduction in the number of parameters and a 38.6% decrease in the number of FLOPs. MELF-YOLOv5-L had 87.4% and 47.4% fewer parameters and FLOPs, respectively, and achieved higher detection accuracy than YOLOv5l.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助哈利波特采纳,获得10
1秒前
李爱国应助唐Doctor采纳,获得10
3秒前
4秒前
4秒前
5秒前
6秒前
anna发布了新的文献求助10
6秒前
8秒前
9秒前
杪杪发布了新的文献求助10
9秒前
11秒前
hua发布了新的文献求助10
11秒前
小仙丹完成签到,获得积分20
11秒前
12秒前
锦城纯契完成签到 ,获得积分10
12秒前
feng1235发布了新的文献求助20
13秒前
gxzsdf完成签到 ,获得积分10
14秒前
GGBOND发布了新的文献求助10
14秒前
知性的剑身完成签到,获得积分10
14秒前
Dalia完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
萨日呼发布了新的文献求助10
17秒前
史念薇完成签到,获得积分10
18秒前
传奇3应助晓晓采纳,获得10
20秒前
23秒前
细腻涛完成签到,获得积分10
27秒前
27秒前
儒雅的梦芝完成签到,获得积分10
28秒前
Rondab应助科研达人采纳,获得30
29秒前
何白完成签到,获得积分10
29秒前
30秒前
哈利波特发布了新的文献求助10
31秒前
qsy完成签到,获得积分10
31秒前
共享精神应助chun采纳,获得10
32秒前
小马甲应助mr.pork采纳,获得10
32秒前
清新的小懒猪完成签到,获得积分10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
33秒前
充电宝应助科研通管家采纳,获得10
33秒前
情怀应助科研通管家采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105