An Improved Lightweight Real-Time Detection Algorithm Based on the Edge Computing Platform for UAV Images

失败 计算机科学 算法 还原(数学) 目标检测 最小边界框 GSM演进的增强数据速率 人工智能 实时计算 图像(数学) 模式识别(心理学) 数学 几何学 并行计算
作者
Lijia Cao,Pinde Song,Yongchao Wang,Yang Yang,Baoyu Peng
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 2274-2274 被引量:5
标识
DOI:10.3390/electronics12102274
摘要

Unmanned aerial vehicle (UAV) image detection algorithms are critical in performing military countermeasures and disaster search and rescue. The state-of-the-art object detection algorithm known as you only look once (YOLO) is widely used for detecting UAV images. However, it faces challenges such as high floating-point operations (FLOPs), redundant parameters, slow inference speed, and poor performance in detecting small objects. To address the above issues, an improved, lightweight, real-time detection algorithm was proposed based on the edge computing platform for UAV images. In the presented method, MobileNetV3 was used as the YOLOv5 backbone network to reduce the numbers of parameters and FLOPs. To enhance the feature extraction ability of MobileNetV3, the efficient channel attention (ECA) attention mechanism was introduced into MobileNetV3. Furthermore, in order to improve the detection ability for small objects, an extra prediction head was introduced into the neck structure, and two kinds of neck structures with different parameter scales were designed to meet the requirements of different embedded devices. Finally, the FocalEIoU loss function was introduced into YOLOv5 to accelerate bounding box regression and improve the localization accuracy of the algorithm. To validate the performance of the proposed improved algorithm, we compared our algorithm with other algorithms in the VisDrone-Det2021 dataset. The results showed that compared with YOLOv5s, MELF-YOLOv5-S achieved a 51.4% reduction in the number of parameters and a 38.6% decrease in the number of FLOPs. MELF-YOLOv5-L had 87.4% and 47.4% fewer parameters and FLOPs, respectively, and achieved higher detection accuracy than YOLOv5l.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助zhao采纳,获得10
刚刚
英姑应助gg采纳,获得10
刚刚
熊熊熊完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
QOP应助123采纳,获得10
2秒前
iceice发布了新的文献求助10
3秒前
4秒前
4秒前
舟遥遥发布了新的文献求助10
4秒前
sjyu1985发布了新的文献求助10
5秒前
5秒前
5秒前
浮游应助山井寿采纳,获得10
5秒前
5秒前
科研通AI5应助tcc采纳,获得10
6秒前
念心发布了新的文献求助10
6秒前
6秒前
6秒前
善学以致用应助xzx采纳,获得30
7秒前
Yipou发布了新的文献求助10
7秒前
7秒前
某某发布了新的文献求助10
7秒前
Rg发布了新的文献求助10
7秒前
8秒前
8秒前
林夕发布了新的文献求助10
8秒前
8秒前
8秒前
机智猴发布了新的文献求助10
8秒前
8秒前
9秒前
qqq发布了新的文献求助10
9秒前
杨天天发布了新的文献求助10
10秒前
10秒前
sada发布了新的文献求助10
10秒前
执玉发布了新的文献求助10
10秒前
小懒鬼完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885604
求助须知:如何正确求助?哪些是违规求助? 4170370
关于积分的说明 12941471
捐赠科研通 3931146
什么是DOI,文献DOI怎么找? 2156910
邀请新用户注册赠送积分活动 1175305
关于科研通互助平台的介绍 1079897