An Improved Lightweight Real-Time Detection Algorithm Based on the Edge Computing Platform for UAV Images

失败 计算机科学 算法 还原(数学) 目标检测 最小边界框 GSM演进的增强数据速率 人工智能 实时计算 图像(数学) 模式识别(心理学) 数学 几何学 并行计算
作者
Lijia Cao,Pinde Song,Yongchao Wang,Yang Yang,Baoyu Peng
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 2274-2274 被引量:5
标识
DOI:10.3390/electronics12102274
摘要

Unmanned aerial vehicle (UAV) image detection algorithms are critical in performing military countermeasures and disaster search and rescue. The state-of-the-art object detection algorithm known as you only look once (YOLO) is widely used for detecting UAV images. However, it faces challenges such as high floating-point operations (FLOPs), redundant parameters, slow inference speed, and poor performance in detecting small objects. To address the above issues, an improved, lightweight, real-time detection algorithm was proposed based on the edge computing platform for UAV images. In the presented method, MobileNetV3 was used as the YOLOv5 backbone network to reduce the numbers of parameters and FLOPs. To enhance the feature extraction ability of MobileNetV3, the efficient channel attention (ECA) attention mechanism was introduced into MobileNetV3. Furthermore, in order to improve the detection ability for small objects, an extra prediction head was introduced into the neck structure, and two kinds of neck structures with different parameter scales were designed to meet the requirements of different embedded devices. Finally, the FocalEIoU loss function was introduced into YOLOv5 to accelerate bounding box regression and improve the localization accuracy of the algorithm. To validate the performance of the proposed improved algorithm, we compared our algorithm with other algorithms in the VisDrone-Det2021 dataset. The results showed that compared with YOLOv5s, MELF-YOLOv5-S achieved a 51.4% reduction in the number of parameters and a 38.6% decrease in the number of FLOPs. MELF-YOLOv5-L had 87.4% and 47.4% fewer parameters and FLOPs, respectively, and achieved higher detection accuracy than YOLOv5l.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的音响完成签到,获得积分10
刚刚
刚刚
孙非完成签到,获得积分10
刚刚
江小鱼在查文献完成签到,获得积分10
1秒前
静xixi完成签到,获得积分20
2秒前
就是躺完成签到 ,获得积分10
3秒前
3秒前
xcc完成签到,获得积分10
4秒前
目眩完成签到,获得积分10
4秒前
等待的花卷完成签到 ,获得积分10
5秒前
莫言发布了新的文献求助10
6秒前
潇潇完成签到,获得积分10
6秒前
YY-Bubble完成签到,获得积分10
6秒前
lulu8809发布了新的文献求助20
6秒前
lJH发布了新的文献求助10
7秒前
莫言完成签到,获得积分10
10秒前
冷艳的道天完成签到 ,获得积分10
12秒前
Angela完成签到,获得积分10
15秒前
lJH完成签到,获得积分10
15秒前
Popeye完成签到,获得积分10
17秒前
pluto应助李李采纳,获得10
20秒前
研友_7ZebY8完成签到,获得积分10
21秒前
合适怡完成签到,获得积分10
21秒前
开朗的慕儿完成签到,获得积分10
21秒前
22秒前
23秒前
我要发财发布了新的文献求助10
24秒前
David完成签到 ,获得积分10
25秒前
NexusExplorer应助小王采纳,获得10
26秒前
27秒前
木卓发布了新的文献求助10
28秒前
小垃圾10号完成签到,获得积分10
28秒前
leolee发布了新的文献求助10
28秒前
29秒前
SciGPT应助苏木采纳,获得10
30秒前
科研通AI2S应助kyJYbs采纳,获得10
30秒前
xavier完成签到 ,获得积分10
30秒前
不爱科研完成签到 ,获得积分10
31秒前
上官若男应助科研通管家采纳,获得10
32秒前
田様应助科研通管家采纳,获得20
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029