CSformer: Bridging Convolution and Transformer for Compressive Sensing

初始化 计算机科学 压缩传感 变压器 人工智能 迭代重建 卷积神经网络 电压 工程类 电气工程 程序设计语言
作者
Dongjie Ye,Zhangkai Ni,Hanli Wang,Jian Zhang,Shiqi Wang,Sam Kwong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2827-2842 被引量:40
标识
DOI:10.1109/tip.2023.3274988
摘要

Convolutional Neural Networks (CNNs) dominate image processing but suffer from local inductive bias, which is addressed by the transformer framework with its inherent ability to capture global context through self-attention mechanisms. However, how to inherit and integrate their advantages to improve compressed sensing is still an open issue. This paper proposes CSformer, a hybrid framework to explore the representation capacity of local and global features. The proposed approach is well-designed for end-to-end compressive image sensing, composed of adaptive sampling and recovery. In the sampling module, images are measured block-by-block by the learned sampling matrix. In the reconstruction stage, the measurements are projected into an initialization stem, a CNN stem, and a transformer stem. The initialization stem mimics the traditional reconstruction of compressive sensing but generates the initial reconstruction in a learnable and efficient manner. The CNN stem and transformer stem are concurrent, simultaneously calculating fine-grained and long-range features and efficiently aggregating them. Furthermore, we explore a progressive strategy and window-based transformer block to reduce the parameters and computational complexity. The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing, which achieves superior performance compared to state-of-the-art methods on different datasets. Our codes is available at: https://github.com/Lineves7/CSformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
遇晴发布了新的文献求助10
1秒前
2秒前
流水自无声完成签到,获得积分10
3秒前
kd1412完成签到 ,获得积分10
3秒前
5秒前
小二郎应助霓娜酱采纳,获得10
5秒前
负责友易发布了新的文献求助10
5秒前
刘欣怡发布了新的文献求助10
5秒前
津津乐道完成签到,获得积分10
6秒前
蒲云海发布了新的文献求助10
6秒前
酷波er应助哈哈哈哈采纳,获得10
6秒前
liuzhanyu发布了新的文献求助10
7秒前
7秒前
lily完成签到 ,获得积分10
8秒前
9秒前
爱喝酒的酒葫芦完成签到,获得积分10
9秒前
CodeCraft应助遇晴采纳,获得10
9秒前
Jiangzhibing发布了新的文献求助20
10秒前
schuang完成签到,获得积分10
11秒前
12秒前
Sssssss完成签到 ,获得积分10
13秒前
13秒前
hzwyyds应助大象放冰箱采纳,获得10
14秒前
14秒前
梁贵年发布了新的文献求助10
15秒前
脑洞疼应助辇道增七采纳,获得10
16秒前
悲凉的强炫完成签到,获得积分10
16秒前
善学以致用应助1241343948采纳,获得10
16秒前
彭于晏应助labxgr采纳,获得10
17秒前
18秒前
tian发布了新的文献求助10
18秒前
19秒前
东风徐来发布了新的文献求助50
20秒前
20秒前
21秒前
烟花应助张陶求采纳,获得10
22秒前
manson完成签到,获得积分20
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993