CSformer: Bridging Convolution and Transformer for Compressive Sensing

初始化 计算机科学 压缩传感 变压器 人工智能 迭代重建 卷积神经网络 电压 工程类 电气工程 程序设计语言
作者
Dongjie Ye,Zhangkai Ni,Hanli Wang,Jian Zhang,Shiqi Wang,Sam Kwong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2827-2842 被引量:55
标识
DOI:10.1109/tip.2023.3274988
摘要

Convolutional Neural Networks (CNNs) dominate image processing but suffer from local inductive bias, which is addressed by the transformer framework with its inherent ability to capture global context through self-attention mechanisms. However, how to inherit and integrate their advantages to improve compressed sensing is still an open issue. This paper proposes CSformer, a hybrid framework to explore the representation capacity of local and global features. The proposed approach is well-designed for end-to-end compressive image sensing, composed of adaptive sampling and recovery. In the sampling module, images are measured block-by-block by the learned sampling matrix. In the reconstruction stage, the measurements are projected into an initialization stem, a CNN stem, and a transformer stem. The initialization stem mimics the traditional reconstruction of compressive sensing but generates the initial reconstruction in a learnable and efficient manner. The CNN stem and transformer stem are concurrent, simultaneously calculating fine-grained and long-range features and efficiently aggregating them. Furthermore, we explore a progressive strategy and window-based transformer block to reduce the parameters and computational complexity. The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing, which achieves superior performance compared to state-of-the-art methods on different datasets. Our codes is available at: https://github.com/Lineves7/CSformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linjt应助侧耳倾听采纳,获得10
1秒前
樱桃儿发布了新的文献求助10
1秒前
Spring完成签到,获得积分10
1秒前
Or1ll完成签到,获得积分10
1秒前
keigo发布了新的文献求助10
2秒前
洁净白容发布了新的文献求助10
2秒前
铜离子完成签到 ,获得积分10
2秒前
慕青应助零零壹采纳,获得10
3秒前
4秒前
科研完成签到,获得积分10
4秒前
KXQ发布了新的文献求助10
4秒前
7676完成签到,获得积分20
5秒前
无心的仙人掌完成签到,获得积分10
6秒前
9秒前
9秒前
9秒前
远看寒山完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
shoplog发布了新的文献求助10
12秒前
桐桐应助KXQ采纳,获得10
12秒前
红叶发布了新的文献求助10
13秒前
wanci应助请别下雨了采纳,获得10
13秒前
13秒前
怕孤单的平卉完成签到 ,获得积分10
13秒前
李志强完成签到,获得积分10
14秒前
远看寒山发布了新的文献求助10
14秒前
15秒前
yegechuanqi发布了新的文献求助10
16秒前
今后应助叫滚滚采纳,获得10
16秒前
17秒前
长生完成签到,获得积分10
18秒前
淡淡依霜发布了新的文献求助10
18秒前
想学发布了新的文献求助10
18秒前
小小小何77完成签到,获得积分10
18秒前
大个应助安谢采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492