CSformer: Bridging Convolution and Transformer for Compressive Sensing

初始化 计算机科学 压缩传感 变压器 人工智能 迭代重建 卷积神经网络 电压 工程类 电气工程 程序设计语言
作者
Dongjie Ye,Zhangkai Ni,Hanli Wang,Jian Zhang,Shiqi Wang,Sam Kwong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2827-2842 被引量:84
标识
DOI:10.1109/tip.2023.3274988
摘要

Convolutional Neural Networks (CNNs) dominate image processing but suffer from local inductive bias, which is addressed by the transformer framework with its inherent ability to capture global context through self-attention mechanisms. However, how to inherit and integrate their advantages to improve compressed sensing is still an open issue. This paper proposes CSformer, a hybrid framework to explore the representation capacity of local and global features. The proposed approach is well-designed for end-to-end compressive image sensing, composed of adaptive sampling and recovery. In the sampling module, images are measured block-by-block by the learned sampling matrix. In the reconstruction stage, the measurements are projected into an initialization stem, a CNN stem, and a transformer stem. The initialization stem mimics the traditional reconstruction of compressive sensing but generates the initial reconstruction in a learnable and efficient manner. The CNN stem and transformer stem are concurrent, simultaneously calculating fine-grained and long-range features and efficiently aggregating them. Furthermore, we explore a progressive strategy and window-based transformer block to reduce the parameters and computational complexity. The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing, which achieves superior performance compared to state-of-the-art methods on different datasets. Our codes is available at: https://github.com/Lineves7/CSformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
li完成签到 ,获得积分10
3秒前
wbb完成签到 ,获得积分10
6秒前
qqqdewq完成签到,获得积分10
6秒前
dingtao发布了新的文献求助10
7秒前
开心的寄灵完成签到 ,获得积分10
8秒前
情怀应助pazhao采纳,获得10
10秒前
阿南完成签到 ,获得积分10
12秒前
善良的嫣完成签到 ,获得积分10
14秒前
照亮世界的ay完成签到,获得积分10
15秒前
Qian完成签到 ,获得积分10
18秒前
19秒前
mosisa完成签到,获得积分20
21秒前
嘚儿塔完成签到,获得积分10
23秒前
马淑贤完成签到 ,获得积分10
24秒前
正直的松鼠完成签到 ,获得积分10
27秒前
陶醉的又夏完成签到 ,获得积分10
28秒前
科研韭菜完成签到 ,获得积分10
31秒前
33秒前
秋秋完成签到,获得积分10
34秒前
伍六七完成签到,获得积分10
36秒前
英姑应助科研通管家采纳,获得10
36秒前
风清扬应助科研通管家采纳,获得30
36秒前
Xiaoxiao应助科研通管家采纳,获得10
36秒前
科目三应助科研通管家采纳,获得10
36秒前
蒸馏水完成签到,获得积分10
44秒前
45秒前
量子星尘发布了新的文献求助10
47秒前
CYQ完成签到 ,获得积分10
48秒前
温梦花雨完成签到 ,获得积分10
51秒前
害羞的雁易完成签到 ,获得积分10
52秒前
53秒前
小苏发布了新的文献求助10
57秒前
1分钟前
柳叶刀Z完成签到 ,获得积分10
1分钟前
macleod发布了新的文献求助10
1分钟前
风笛完成签到 ,获得积分10
1分钟前
1分钟前
LY0430完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685708
关于积分的说明 14838825
捐赠科研通 4673854
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067